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ABSTRACT

Flash floods continue to emerge as a serious and growing natural hazard for many communities worldwide,
especially in areas affected by tropical storms. These floods damage critical infrastructure and severely strain
economic resources, underscoring the urgent need for advanced flood prediction tools. This study presents an
innovative integrated machine learning approach, BCMO-RF, which merges Balancing Composite Motion
Optimization (BCMO) with Random Forest (RF) to map flash flood susceptibility. In the BCMO-RF approach, the
RF algorithm is applied to develop the flash flood model, while BCMO is used to explore and optimize the model's
parameters. The study concentrates on areas in Thanh Hoa Province, Vietnam, frequently impacted by flash floods.
Accordingly, various geospatial data sources were utilized to compile a geodatabase comprising 2,540 flash flood
locations and 12 influencing factors. The geodatabase served as the basis for training and validating the BCMO-RF
model. Results show that the BCMO-RF model attained high prediction accuracy (93.7%), achieving a Kappa
coefficient of 0.874 and an AUC score of 0.988, outperforming the Deep Learning model benchmark. The study finds
that the BCMO-RF model is reliable for accurately mapping areas susceptible to flash floods.

Keywords: Flash flood susceptibility, Random Forest; Balancing Composite Motion Optimization, GIS, Tropical

areas.

1. Introduction experiences severe weather events, including
typhoons, floods, droughts, and landslides,

According to the Global Climate Risk o .
threatening its environment, economy, and

Index 2020, Vietnam was ranked the sixth S
most affected country globally by climate commupltles (Group a.nd B.ank, 2021).
variability and extreme weather events (Tuyet ~/xccordingly, floods constitute Vietnam's most
Hanh et al., 2020). The nation frequently Significant economic risk, responsible for
approximately 97% of the average annual
*Corresponding author, Email: Dieu.T.Bui@usn.no losses from natural hazards. Projections
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indicate that due to climate change, the
population affected by floods could increase
by 3 to 10 million by 2035-2044 (Willner et
al., 2018). Thus, investing in research and
innovation is crucial to enhancing flood
prediction methods and creating effective
flood management strategies.

Floods in Vietnam can essentially be
classified into river floods, coastal floods,
urban floods, dam break floods, and flash
floods. River flooding occurs when prolonged
and heavy rainfall causes rivers to exceed
their capacity, overflowing water into
surrounding areas (Plate, 2007). This
phenomenon develops gradually and can
persist for several days, significantly
inundating adjacent lands. Meanwhile, coastal
floods occur when seawater inundates coastal
areas, typically caused by storm surges, high
tides, rising sea levels, or tsunamis, leading to
potential damage and safety risks (Wdowinski
et al,, 2016). This rise is predominantly
caused by tropical depressions or storms and
strong winds, which drive water inland,
resulting in flooding along the coast. Urban
flooding occurs when excessive rainfall
overwhelms the drainage system in densely
populated areas, leading to the overflow of
sewer pipes (Guo et al., 2021). This situation
is exacerbated by continuous rainfall on
impervious surfaces, which reduces the land's
ability to absorb water, further contributing to
the inundation. Dam break floods occur when
flood protection structures fail as a result of
extreme flood events (Wang et al., 2024). In
contrast, flash flooding is a sudden surge of
water in a stream or low-lying urban area,
typically happening within six hours after a
major rainfall event (Knocke and Kolivras,
2007).

Flash flooding is the most destructive and
challenging to predict among these types of
floods due to its rapid and sudden onset,
strong flow velocities, and nonlinear
dynamics (Wu et al., 2019), making it

particularly hazardous. Literature review
shows that spatial prediction of flash floods
has seen significant advancements in the last
ten years through hydrological models,
geographic information systems (GIS), remote
sensing, and machine learning techniques.
Advanced hydrological models, such as Soil
and Water Assessment Tool (SWAT) (Jodar-
Abellan et al, 2019), the Hydrologic
Engineering Center's Hydrologic Modeling
System (HEC-HMS) (Sabau et al., 2023), and
TELEMAC (Godara et al., 2023) have been
employed to simulate flash flood scenarios.
These models utilize a range of numerical
formulas, from simple empirical equations to
sophisticated differential formulations, to
quantify rainfall-runoff dynamics. By
considering factors such as precipitation, soil
type, and land cover, they predict the spatial
distribution of floodwaters. Generally, models
are crucial for precisely forecasting flash
floods across different spatial and time
dimensions (Bournas and Baltas, 2022);
however, they still depend on extensive long-
term monitoring data for reliable predictions.
Recent developments in GIS, remote
sensing technologies, and artificial
intelligence have significantly advanced
research in flash flood modeling and
prediction (Amiri et al.,, 2024). Herein,
satellite-based remote sensing provides real-
time data crucial for monitoring and
predicting flash flood events (Suresh et al.,
2024). In contrast, GIS allows combining and
examining multiple data layers, such as
topography, land use, soil moisture, and
rainfall intensity, for mapping flood-prone
areas and identifying potential flash flood
zones (Trong et al., 2023). While artificial
intelligence, utilizing various advanced
machine learning and deep learning
techniques, can effectively predict flash flood-
prone areas by leveraging historical flash
flood records and multi-sourced geospatial
data, i.e., extreme learning (Bui et al., 2019),
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decision trees (Ngo et al.,, 2021), random
forest (Abedi et al., 2022), long short-term
memory (Zhao et al., 2022), and deep learning
(Tsangaratos et al., 2023).

Recent research emphasizes the
importance of integrating various predictive
methods to enhance the reliability of flash
flood prediction. The combination of GIS,
remote sensing, and machine learning could
provide a comprehensive approach to spatial
prediction (Amiri et al., 2024). Despite
advancements, predicting flash floods remains
challenging due to the complex interactions
between  climatic,  hydrological,  and
topographical  factors. Thus, continued
innovation and integration of these
approaches are vital for improving the
accuracy and reliability of flash flood
forecasts, ultimately enhancing preparedness
and resilience against these devastating
events.

This study advances insights into flash
flood modeling and prediction by introducing
and validating a new integrated machine-
learning approach named BCMO-RF. This
approach integrates Balancing Composite
Motion Optimization (BCMO) with Random
Forest (RF) for flash flood susceptibility
mapping, illustrated through a case study in a
flood-prone region of Thanh Hoa Province,
Vietnam. This methodology uses RF to
develop the flash flood model while BCMO
optimizes model parameters. The findings are
subsequently assessed compared to cutting-
edge ensemble learning and deep learning
methods, followed by a summary of
conclusions.

2. Study area and data used
2.1. Study area

Thanh Hoa Province (Fig. 1), located in
Vietnam's north-central region, is selected as
the study area for flash flood research due to
its diverse topography, climatic conditions,
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and historical susceptibility to flash floods
(Hoa et al., 2024). This makes it a valuable
case for enhancing our understanding of flash
flood dynamics and refining prediction
techniques. Spanning approximately 11,080.8
square kilometers, the province features a
varied landscape that includes mountainous
regions, rivers, and coastal areas.

Thanh Hoa's topography is highly varied,
ranging from the steep mountains of the
western region to the flat, low-lying coastal
plains in the east. This varied topography is
considered a contributing factor to the region's
complex flash flood dynamics. Additionally,
the province is intersected by several major
rivers, including the Ma and Chu rivers,
significantly  influencing the  regional
hydrological cycle. Besides, the province
possesses an intricate system of rivers and
streams (Linh et al., 2019) that can quickly
swell during heavy rainfall, leading to sudden
and severe flooding.

The climate of Thanh Hoa is tropical
monsoon, with distinct wet and dry seasons
(Dinh and Thi, 2024). The wet season in the
province extends from May to October. It is
characterized by substantial rainfall and a high
frequency of storms, which often result in
flash floods and landslides, particularly in the
mountainous and hilly areas where rapid
runoff can occur.

The province's economy relies heavily on
agriculture, with a significant portion of the
population residing in rural areas. These
communities are often located in flood-prone
zones, making them particularly susceptible to
the impacts of flash floods. The combination
of high population density in vulnerable areas
and limited infrastructure for flood
management heightens the need for effective
flash flood prediction and mitigation
strategies. More information about this study
area can be found in Hoa et al. (2024).
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Figure 1. Geographic positioning of Thanh Hoa Province and the locations of flash-flood incidents

2.2. Data
2.2.1. Flash-flooded inventory

For this analysis, we relied on the flash-
flood inventory map created in a previous
investigation within the scope of research
project VAST05.01/21-22, sponsored by the
Vietnam  Academy of Science and
Technology (Hoa et al., 2024).

A total of 2,540 flash flood sites were
mapped through change detection analysis
(Psomiadis, 2016) of Sentinel-1 SAR
imagery. Herein, flash floods resulting from
tropical storms during the five-year period
from 2018 to 2022, which caused substantial
precipitation and ensuing flash floods, were
utilized.

Initially, we compiled a list of tropical
cyclones and storms affecting Thanh Hoa

Province wusing reports from Vietnamese
media, prioritizing heavy rains known to
cause substantial flash floods and landslides.
Significantly, the timeframe from July 7,
2021, to August 31, 2021, was identified as
particularly important due to various flash
flood events (Hoa et al., 2024). During this
period, the study area was affected by a
tropical depression emerging from the East
Sea, resulting in intense downpours. The
minimum and maximum recorded rainfalls
were 1,069.9 mm and 1,023.9 mm,
respectively.

Sentinel-1 images recorded before and
after flash flood events were collected to
detect the flash flood sites. These images
underwent a comprehensive processing
protocol to recognize and position flash flood
occurrences (Trong et al., 2023). The process
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began with image calibration, converting raw
SAR pixel values to radar backscatter values
that denote surface reflectivity. This was
followed by speckle filtering to reduce the
noise in SAR images.

Then, the georeferencing process was
carried out to adjust the images to a specific
coordinate  system, ensuring  accurate
comparisons between the pre-and post-flood
images. Subsequently, flash flood areas were
manually identified and delineated. The initial
flash flood map was refined using additional
criteria such as slope, land cover, and hill
shading to reduce false positives and improve
accuracy. Finally, on-site surveys were carried
out to validate the detected flood sites. This
involved visiting the identified areas to
confirm the presence and extent of flooding,
thereby enhancing the reliability of the
satellite-based flood detection.

2.2.2. Flash flood indicators

This study's approach to modeling flash
floods hinges on correlating historical flash
flood events with their influencing factors to
predict future occurrences. Consequently, the
precision of these predictions is highly
dependent on the meticulous selection of these
influencing factors. In a previous study, Hoa
et al. (2024) evaluated the correlations
between flash flooding and twelve flash flood
indicators (soil type, geology, land use/land
cover (LULC), stream density, Normalized
Difference  Vegetation Index (NDVI),
Normalized Difference Water Index (NDWI),
elevation, topographic wetness index (TWI),
slope, aspect, curvature, and rainfall). Based
on these findings, the current study employs
these twelve indicators (Fig. 2) for flash flood
modeling.

The soil type map (Fig. 2a) was generated
from national pedology maps at a scale of
1:100,000, issued by the Ministry of
Agriculture and Rural Development of
Vietnam. For this analysis, the original 32 soil
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types from the pedology maps have been
consolidated into 16 generalized categories
for flash-flood modeling. The geological map
(Fig. 2b) was derived from the Geological and
Mineral Resources Maps at a scale of
1:200,000, issued by the Ministry of Natural
Resources and Environment of Vietnam.
Utilizing the material components and degree
of weathering (Tien Bui et al., 2012), the map
was compiled into 20 categories. The land
use/land cover (LULC) map of Thanh Hoa
Province with 10 categories (Fig. 2c) was
developed using a 2020 LULC dataset
provided by the Japan Aerospace Exploration
Agency (JAXA) (www.eorc.jaxa.jp). The
LULC has a resolution of 30 m.

Regarding the stream density, the stream
density map (Fig. 2d) was computed based on
the  stream  network  derived  from
OpenStreetMap (www.openstreetmap.org;
accessed on February 15, 2023). The stream
density map was then produced via the Line
Density tool in ArcGIS Pro. In Fig. 2d, the
density map for Thanh Hoa Province reveals
values ranging from 0.0 to 4.7 km/km?.

NDVI and NDWTI indices were chosen for
this study's flash flood modeling due to their
effectiveness in capturing essential surface
data regarding vegetation vitality and
moisture content (Hoa et al., 2024). Besides,
Landsat 8 OLI imagery, with a 30-meter
spatial resolution and accessed on February
15, 2023, from www.earthexplorer.usgs.gov,
was employed in this study to create the
NDVI map (Fig. 2e) and NDWI map (Fig. 2f)
for Thanh Hoa Province. The NDVI map and
the NDWI map were derived following the
method outlined in Equation 1 (Defries and
Townshend, 1994) for NDVI and Equation 2
(Xu, 2006) for NDWI, as detailed below:
NDVI = (Band 5 — Band 4)/(Band 5 +

Band 4) M
NDWI = (Band 5 — Band 6)/(Band 5 + @)
Band 6)


http://www.openstreetmap.org/
http://www.earthexplorer.usgs.gov/
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Figure 2. Flash-flood indicators: (a) Soil type; (b) Geology; (c) LULC; (d) Stream density; (¢) NDVI;
(f) NDWI; (g) Elevation; (h) TWI; (i) Slope; (j) Aspect; (k) Curvature; and (1) Rainfall. Abbreviation for
Soil type: S: Neutral saline soil; Rr: Black soil on serpentine; Pjy: Alluvial soil in streams and waterlogged
areas; Pg: Gley alluvial soil; Pf: Alluvial soil with mottled layers; Pb: Accumulated alluvial soil;
P: Alluvial soil without recent deposition; Others: Other soils; M: Moderately saline soil; H: Humus soil;
Fsa: Red-yellow soil; Fq: Light yellow soil on sandstone; Fp: Yellow-brown soil on ancient alluvium; Fkv:
Red-brown soil; D: Colluvial valley soil; C: Coastal sandy soil; B: Degraded grey soil on ancient alluvium
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Figure 2. Cont.

In flash flood modeling, topography and study, the digital elevation model (DEM) of
terrain features significantly influence water Thanh Hoa Province was obtained from the
flow during rainfall (Zevenbergen and ALOS DEM, featuring a 30-meter resolution
Thorne, 1987). Consequently, these factors and supplied by JAXA, accessible at
were incorporated into the modeling. For this www.eorc.jaxa.jp (accessed on February 15,
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2023). Employing this DEM, five
morphometric factors were produced using
the Spatial Analysis tool in ArcGIS Pro.
These factors include elevation, TWI, slope,
aspect, and curvature. Figure 2g shows the
province's elevation map with elevation
values ranging from 0.0 m to 1897.2 m. For
the case of the TWI map (Fig. 2h), the TWI
values span from 5.3 to 20.6. Within Thanh
Hoa Province, the slope map's values vary
from 0.0 to 77.1 degrees (Fig. 2i). The aspect
map was compiled with nine slope directions
(Fig. 2j). Lastly, for the curvature map
(Fig. 2k), the curvature values range from
-20.4 to 24.6.

Regarding rainfall, this factor is crucial in
shaping and directing the water flow within a
watershed, significantly influencing the
magnitude, velocity, and behavior of flood
flows (Bryndal et al., 2017). Determining the
paths water takes as it travels over the terrain
affects how quickly water accumulates and
flows, impacting the intensity and speed of
flash floods. Additionally, this factor dictates
how water interacts with the landscape,
influencing erosion, sediment transport, and
the overall dynamics of floodwaters
(Hamidifar et al., 2024), thereby playing a
pivotal role in the hydrological response of a
watershed during flash flood events. As
detailed in Section 2.2, we analyzed the most
critical rainfall incidents that resulted in flash
floods in Thanh Hoa Province during the five
years from 2018 to 2022. The timeframe from
July 7, 2021, to August 31, 2021, stands out
for its connection to a serie of flash flood
events. Consequently, the total rainfall during
this period was used to create the map (Figure
21) applying the Inverse Distance Weighting
(IDW) interpolation technique in ArcGIS Pro.
The rainfall data was drawn from the climate
resources provided by the NASA POWER
project.

3. Background of the algorithms used
3.1. Random Forest

As formulated by Breiman (2001),
Random Forest serves as a robust and

extensively utilized ensemble learning
approach for tasks in classification and
regression. In flash flood modeling, the

Random Forest algorithm can -effectively
handle the complexities and nonlinearities
inherent in environmental data (Tan et al.,
2024), providing reliable predictions based on
a combination of multiple decision trees.

Consider a dataset for flash floods, referred
to as FFD, which contains » samples
organized as FFD € (X,y). In the context of
this analysis, X is structured as a matrix with
m rows and 12 columns, with each column
indicating a distinct flash flood indicator. The
matrix y, with m rows and a single column,
specifies the presence (which is coded as 1) or
absence (which is coded as 0) of historical
flash floods at various locations. The aim is to
develop a predictive model, FF(X)—[0,1], by
employing the random forest algorithm.
Employing the FFD, the random forest
algorithm produces L subsets using bootstrap
aggregating,  often called "bagging”.
Subsequently, each of these subsets is utilized
to create each decision tree separately. The
individual decision trees are then combined to
produce an ensemble model. Finally, the
voting mechanism of the classification task is
used where each tree votes for a class, and the
final prediction is the majority vote, where the
probability values for the presence class are
used for flash flood indices.

The effectiveness of the random forest
(RF) model is significantly influenced by the
forest's tree count (TotalTree), the maximum
depth limit for each tree (MaxTree), and the
number of flood indicators incorporated
(nfloodTree). Therefore, the careful selection
of these parameters is essential. To address
this, the study introduces a new approach that
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employs BCMO to search for and optimize
these parameters effectively. The details of
this optimization method are presented in the
following section.

3.2. Balancing Composite Motion Optimization

Balancing Composite Motion Optimization
(BCMO), is a high-level population-based
optimization algorithm, initially introduced by
Le-Duc et al. (2020). It is designed to
efficiently search for and optimize multiple
parameters within complex models. BCMO
combines principles from several optimization
techniques to balance exploration and
exploitation, facilitating an extensive search
across the solution space while converging on
optimal or near-optimal solutions. BCMO
offers a powerful and flexible approach for
optimizing the parameters of the RF model. Its
ability to balance exploration and exploitation,
combined with a composite motion strategy,
allows for effective navigation of complex
solution spaces and enhances model
performance (Tuan et al., 2023). The key
features of BCMO for optimizing the random
forest model in flash flood modeling in this
research are as follows:

(1) Population Initialization

After defining the search space, population,
and objective function, BCMO sets up a
population of solution candidates at the outset.
Each candidate represents a possible set of
parameters for the random forest model,
including TotalTree, MaxTree, and nfloodTree.
The initial distribution and placement of the
candidate solutions are determined using Eq.3.

POS; = LB; +rand (1,S) x (UB;—LB,) (3)
where POS;, UB;, and LB; are defined by the
position, maximum constraint, and minimum
constraint of the candidate solution. The
parameter S denotes the dimension of the
search space.

Subsequently, each candidate solution is
evaluated for fitness based on the established
objective function and ranked to identify the
optimal individual.
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(2) Composite Motion and
Balancing Mechanism

The algorithm employs a composite motion
strategy, combining various movement
patterns, taking cues from natural processes
and other related optimization techniques. This
strategy ensures that the search process is
diversified, preventing premature convergence
on local optima (Le-Duc et al, 2020). A
balancing mechanism is incorporated to fine-
tune the balance between dynamic exploration
(discovering new regions in the solution space)
and exploitation (enhancing existing optimal
solutions).  This  mechanism  preserves
population diversity and improves the
algorithm's capacity to identify high-quality
solutions. Thus, in each iteration (it), the
position of the i candidate solution is revised
according to Eq. 4, shown below.

POSH*Y = POSH + vy + v; 4)
where v;/; presents the relative displacement
of the i™ candidate solution concerning the j"
candidate, and v; denotes the directional
vector of the j™ candidate.

(3) Fitness Evaluation,
Update

Each candidate solution's fitness is assessed
according to its effectiveness in the random
forest model using the objective function. The
selection process, guided by fitness
evaluations, identifies which candidates to
preserve and which to substitute. Then, the
positions of the selected candidates are updated
according to the composite motion strategy
(Equation 4 above).

(4) Termination Criteria

Steps 2 and 3 are repeated until a set
termination condition is satisfied, resulting in
the identification of the best candidate solution.

Strategy

Selection, and

3.2. Proposed approach using Balancing
Composite Motion Optimized Random Forest
Jfor Spatial Prediction of Flash Flood

The flowchart of the proposed approach,
which integrates BCMO and RF for mapping
flash flood modeling, is illustrated in Fig. 3.
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The Matlab code for the BCMO algorithm is
available in Le-Duc et al. (2020), whereas the
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e

Model Optimization

Data processing and coding
using ArcGIS Pro and Python script

Flash Flood Database

Model validation

< &2

Balancing Composite Motion Opfimization (BCMO)

The BCMO-RF model

.

Figure 3. The flowchart illustrates the proposed approach

3.2.1. Flash flood database

In the previous work (Hoa et al., 2024), the
flash flood database was constructed using the
2540 flash flood sites and 12 flash flood
indicators. The coordinate system of the
database was set to WGS 1984 UTM Zone
48N. All indicators were standardized to a
raster format at 30 m resolution and
normalized between 0.01-0.99.

In addition to the 2,540 flash flood sites, a
proportional number of points representing
non-flood sites were also sampled, resulting in
5,080 samples for flash flood modeling.
Locations with flash floods were labeled "1,"
and those without were labeled "0.". Using
ArcGIS Pro's sample tool, a sampling

operation was subsequently executed to gather
values for ten influencing factors at these
locations. Next, the dataset was randomly
partitioned, with 70% allocated to the training
set and 30% to the validation set, consisting of
3,556 and 1,524 samples, respectively.

3.2.2. Objective function

As described in Section 3.2, the Random
Forest algorithm was used to build the flash
flood model, with BCMO applied to search
for and optimize three model parameters:
TotalTree, MaxTree, and nfloodTree. In this
context, the 3D coordinates of the candidate
solution correspond to these three parameters.

Throughout the training phase, the parameters
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of the BCMO-RF model were examined and
adjusted within the search space to identify
the optimal Random Forest model. The fitness
of these parameters was assessed with the
Mean Squared Error (MSE) serving as the
objective function (Tuan et al.,, 2023), as
below:

1 n
MSE = —Z (FL; — FLO))? (5)
n i=1

where FFL; signifies the flash flood value
sourced from the inventory map, while
FLO; Represents the flash flood estimation
generated by the proposed BCMO-RF model;
n denotes the total number of samples used in
the analysis.

3.2.3. Model Setup

Configuring the RF model requires
specifying parameters: TotalTree,
MaxTree, and nfloodTree. Consequently, a
3-dimensional search space (S)
established. These parameters were organized
into a 1xS matrix. The maximum constraint
(LB) and minimum constraint (UB) (Eq.3)
were -1 and 1, respectively. A
population of 85 candidate solutions was
chosen, with a maximum of 2,000 iterations
(Tuan et al., 2023). Within the search space S,
the coordinates of each candidate solution in
the 3-dimensional space were obtained,
making each position a potential solution for
the BCMO-RF model. As individuals move to
new positions, new solutions are generated
and tested. The optimization process aims to
discover the position where MSE is at its
minimum.

three

was

set to

3.3.4. Performance assessment

To evaluate how well the proposed
BCMO-RF model performs in predicting flash
flood occurrences spatially, we employed the
following statistical metrics: True Positive
(TP), False Positive (FP), False Negative
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(FN), and True Negative (TN)
(Degiorgis et al., 2013). By leveraging these
metrics, the following performance indicators
were derived: Positive Predictive Value (PPV)
(Eq. 6), which measures the proportion of
accurate flash flood predictions; Negative
Predictive Value (NPV) (Eq. 7), which
indicates the proportion of accurate non-flash
flood predictions; Sensitivity (Sens) (Eq. 8),
also known as recall, which assesses the
model's competence in accurately predict
flash flood locations; and Specificity (Spec)
(Eq. 9), which measures the model's capacity
to predict non-flood locations accurately.
Accuracy (Eq.10) demonstrates the model's
overall accuracy in predicting both flood and
non-flood locations.

rates

PPV=TP/(TP+FP) (6)
NPV=TN/(TN+FN) (7
Sensitivity=TP/(TP+FN) ®
Specificity=TN/(FP+TN) ©)

Accuracy=(TP+TN)/(TP+FP+FN+TN) (10)

In addition, the Receiver Operating
Characteristic (ROC) Curve (Pepe, 2000),
which plots the true positive rate (Sensitivity)
versus the false positive rate (1 - Specificity)
at multiple threshold levels, was also used.
The Area Under the ROC Curve (AUC) was
used to measure the overall performance of
the BCMO-RF model.

3.2.5. Reference Model and Creation of the
Flash Flood Susceptibility Map

In this study, the effectiveness of the
proposed BCMO-RF model is showcased via
a comparative analysis with the prior
established Deep 1D-CNN model (Hoa et al.,
2024) for flash flood prediction. Successful
training and validation of the BCMO-RF
model facilitated the computation of flash
flood susceptibility indices throughout the
study area, which were converted into GIS
format, resulting in the construction of the
final susceptibility map.
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4. Results and analysis
4.1. Model training and validating

During the training phase, the BCMO-RF
model was developed using the training
dataset, where the three parameters,
TotalTree, MaxTree, and nfloodTree, are

searched and optimized through 2000
iterations. The best values found are:
TotalTree i1s 212, MaxTree is 15, and

nfloodTree is 4. To mitigate the risk of
overfitting, a 10-fold cross-validation

technique was utilized during the training
phase of the BCMO-RF model. The result is
shown in Table 1 and Fig. 4. The results
indicate that the BCMO-RF model performs
robustly in classifying flash flood events.
Specifically, the PPV is 92.7%, signifying
that the model accurately identifies flash
flood pixels in 95.59% of instances. The
NPV stands at 93.8%, which means the
model correctly classifies pixels as non-flash
floods with a 93.8% accuracy.

Table 1. Performance of the BCMO-RF model in the training phase (using the 10-fold cross-validation

technique) and the validation phase

Flash Flood model Statistical metrics
TP [ TN | FP [ EN [PPV (%)|NPV (%)[ Sens (%) [ Spec(%) | Acc | Kappa [AUC
Training phase
BCMO-RF 1649 [ 1667 | 129 [111] 927 | 93.8 93.7 928 [ 933 [ 0.865 [0.981
1D-CNN 1650 | 1603 [ 128 [175] 92.8 | 90.2 90.4 926 | 915 ] 0.830 [0.977
Validating
BCMO-RF 712 [ 716 | 50 [46 ] 934 | 94.0 93.9 935 937 | 0.874 [0.988
1D-CNN 694 | 681 | 68 | 81| 91.1 89.4 89.5 90.9 | 90.2 | 0.804 [0.969
1.0 1 —
0.8 1
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Figure 4. ROC curve and AUC of the BCMO-RF model in the training phase and the validation phase

Additionally, the model's Sens is 93.7%,
demonstrating its efficacy in correctly
identifying locations of flash floods. Spec is

92.8%, reflecting the model's competence to
identify non-flood locations accurately. The
model's overall accuracy (Acc) is 93.3%,
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indicating its general effectiveness in
predicting flood and non-flood locations.
Furthermore, the Kappa statistic is 0.865,
suggesting that the BCMO-RF model's
performance is 86.5% better than a random
classification, underscoring its reliability and
precision in flash flood prediction tasks. The
AUC is 0.981, signifying that the model's
overall performance is excellent, with a global
performance rate of 98.1%.

By using the validation set, the prediction
capability of the proposed BCMO-RF model
is verified, and the result is also shown in
Table 1 and Fig. 4. The evaluation metrics
indicate  that the BCMO-RF model
demonstrates high prediction performance in
classifying flash flood locations. The PPV is
93.4%, which signifies that when the model
predicts a flash flood, it is correct in 93.4% of
the cases. The NPV is 94.0%, showing that
the model correctly identifies non-flash flood
pixels with 94.0% accuracy. The model's
93.9%, indicating its

detecting flash  flood
locations. The specificity is 93.5%, reflecting
its ability to predict non-flood locations

sensitivity  is
effectiveness in

accurately. The overall prediction accuracy of
the model is 93.7%, demonstrating its general
reliability in predicting flood and non-flood
areas. Moreover, the Kappa statistic is 0.874,
which means the model's performance is
87.4% better than random chance. The AUC
is 0.988, signifying that the prediction
performance of the model is excellent, with a
global performance rate of 98.1%

4.2. Comparative Assessment and Statistical
Examination

To assess the capabilities of the proposed
BCMO-RF model, we conducted a
comparative analysis against the established
benchmark, the Deep 1D-convolution neural
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network (Deep 1D-CNN) model, as
demonstrated in prior research. The detailed
design and explanation of the Deep 1D-CNN
model are presented by Hoa et al. (2024). This
comparison aimed to evaluate both models'
performance and predictive capabilities. The
result is shown in Table 1 and Fig. 4.

It could be seen that, during the training
phase, using the 10-fold cross-validation
technique, the BCMO-RF model
demonstrated superior performance across
several statistical metrics compared to the 1D-
CNN model. The BCMO-RF model achieved
a PPV of 92.7% and a Negative Predictive
Value (NPV) of 93.8%, while the 1D-CNN
model recorded an almost equal PPV of
92.8% but a lower NPV of 90.2%. The
sensitivity (Sens) of the BCMO-RF model
was 93.7%, indicating a higher ability to
correctly identify flash flood locations
compared to the 1D-CNN model's 90.4%. The
specificity (Spec) of the BCMO-RF model
was almost equal at 92.8% compared to
92.6% for the Deep 1D-CNN. In terms of
overall accuracy (Acc), the BCMO-RF model
achieved 93.3%, outperforming the Deep
ID-CNN model's accuracy of 91.5%. The
Kappa statistic,c, which measures the
agreement between observed and predicted
classifications, was higher for the BCMO-RF
model (0.865) compared to the Deep 1D-CNN
model (0.830). Finally, the Area Under the
Curve (AUC) was 0.981 for the BCMO-RF
model, indicating excellent global
performance, slightly better than the Deep
1D-CNN model's AUC of 0.977.

The result in the validation phase indicated
that the BCMO-RF model outperformed the
Deep 1D-CNN model across most metrics.
The BCMO-RF model achieved a PPV of
93.4% and an NPV of 94.0%, whereas the
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Deep 1D-CNN model recorded lower values
of 91.1% and 89.4%, respectively. The
sensitivity of the BCMO-RF model was
93.9%, surpassing the Deep
ID-CNN model's 89.5%, and its specificity
was 93.5% compared to the Deep 1D-CNN's
90.9%. The overall accuracy of the BCMO-
RF model during the validation phase was
93.7%, significantly higher than the Deep 1D-
CNN model's 90.2%. The Kappa statistic for
the BCMO-RF model was 0.874, indicating a
higher agreement rate compared to the
DeeplD-CNN model's 0.804. Additionally,
the BCMO-RF model achieved an AUC of
0.988, showcasing slightly better global
performance over the Deep 1D-CNN model's
AUC of 0.969. In summary, the BCMO-RF
model demonstrated consistent and superior
performance over the Deep 1D-CNN model in
the training and validation phases, making it a
more reliable choice for flash flood prediction
in the study area.

A paired samples t-test was carried out to
statistically verify whether the BCMO-RF
model outperforms the Deep 1D-CNN model
for flash flood prediction. The null hypothesis
(HO) asserts that there is no significant
difference in the predictive abilities of the two
models within a 95% confidence interval for
the difference in means. T-value and p-value
were computed for the model pair. Rejection
of the null hypothesis occurs if the t-value
exceeds the range of -1.96 to +1.96 and the p-
value is equal to or less than 0.05. The results
presented in Table 2 show a t-value of 2.694,
which lies outside the range of -1.96 to +1.96,
along with a p-value of 0.007, which is below
the significance level of 0.05. These findings
demonstrate that the BCMO-RF model's
predictive performance significantly exceeds
that of the Deep 1D-CNN model.

Table 2. Paired samples t-test Analysis of the
BCMO-RF model and the Deep 1D-CNN model
for Spatial Flash Flood Prediction in this research

No.| Pairwise model |#-value | p-value | Significance
BCMO-RF model
1 vs. Deep 1D-CNN 2.694 | 0.007 Yes

4.3. Flash-flood susceptibility map

To generate the flash flood susceptibility
map, Thanh Hoa Province was organized into
a matrix of 5,926 columns by 5,093 rows,
corresponding to 30,181,118 pixels. The
susceptibility index values for these pixels
were then computed using the BCMO-RF
model. The results indicate that the index
ranged from 0.000 to 1.000,
representing varying degrees of flash flood
susceptibility across the region. Then, the
susceptibility map was projected into the
WGS 1984 UTM Zone 48N coordinate
system. This conversion facilitated the
creation of a comprehensive flash flood
susceptibility map, depicted in Fig. 5. The
resulting map provides a detailed spatial
representation of flash flood risks, enabling
better planning and mitigation strategies in the
study area.

Examination of the susceptibility map
highlights a notable flash flood risk in specific
districts, among them Muong Lat, Ba Thuoc,
and Trieu Son (Fig. 5). These regions
consistently have experienced severe flash
floods in the last three years. The primary
contributing factors are the elevated altitudes
and steep slopes of the terrain, which
exacerbate water runoff and increase the
speed and intensity of flash floods. These
geographical these
districts particularly vulnerable during heavy
rainfall Conversely, southeastern
districts like Hoang Hoa, Nga Son, Quang
Xuong, and Hoang Hoa demonstrate a
markedly lower risk of flash floods.

values

characteristics make

events.
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Figure 5. Flash flood susceptibility map for the study area using the BCMO-RF model

5. Discussions

While forecasting flash floods is still a
significant challenge (Ding et al., 2021; Saint-
Fleur et al., 2023), assessing and identifying
vulnerable areas beforechand can be a
proactive approach to mitigate the risks
associated with flash floods (Pham et al.,
2020). This study proposes and validates a
significant advancement in methodology that
enhances the predictive accuracy of flash
floods. Specifically, the RF model is utilized
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to establish flood prediction models, while the
BCMO technique is employed to fine-tune
three key parameters: TotalTree, MaxTree,
and nfloodTree.

The  introduction and  successful
application of the BCMO-RF model represent
a significant improvement in prediction
accuracy compared to the state-of-the-art
Deep 1D-CNN (Hoa et al.,, 2024). The
statistical test results demonstrate that the
BCMO-RF model significantly surpasses the
benchmark. This denotes a statistically
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significant improvement in  predictive
performance, which is essential for areas
susceptible to frequent and severe rainfall,
such as this study area. Herein, the BCMO-RF
model outperforms the Deep 1D-CNN in its
ensemble learning framework in flash flood
prediction, which assembles multiple decision
trees to enhance prediction precision and
reduce overfitting.

One of the standout features of the BCMO-
RF model is its robustness and adaptability to
different environmental conditions. By
incorporating BCMO, the model can manage
the wvariability in the geo-environmental
patterns of the study area. This adaptability is
crucial for maintaining the model's
effectiveness under diverse and changing
climatic conditions. The ability of the BCMO-
RF model to accurately predict flash floods
stems from its sophisticated algorithm, which
effectively balances composite motion and
optimizes the random forest approach. This
ensures the model can handle the complex
interplay of various meteorological and
geographical factors influencing flash floods.

Despite its success, the BCMO-RF model
does face particular challenges and
limitations. The complexity of the model
requires significant computational resources
and technical expertise to implement and
maintain effectively. Additionally, the model's
performance is highly dependent on the
quality and granularity of the input data. In
this research, these data were collected and
processed from multiple sources with
different resolutions and scales; therefore, it is
challenging to eliminate uncertainties.

In addition, while the model has shown
promising results for Thanh Hoa province, its
effectiveness in other regions with different
climatic and topographical conditions must be
validated through further research. Addressing
the identified limitations and expanding the
applicability of the BCMO-RF model are
crucial for future research. One important
direction is to consider the model in diverse

geographical regions, i.e., the mountain areas
of northern Vietnam, to understand its
versatility and limitations. This would involve
testing the model in arecas with different
climatic =~ patterns,  topographies,  and
urbanization levels.

6. Conclusions

In conclusion, the proposed BCMO-RF
model exhibits high accuracy and reliability,
with enhanced performance metrics that
validate its effectiveness in predicting flash
flood occurrences. The improved robustness
and adaptability of the BCMO-RF model
make it a wvaluable tool for disaster
management and mitigation efforts. However,
addressing the model's limitations and
pursuing further research opportunities is
essential to fully realize its potential and
broaden its applicability across different
regions.

Future work could focus on refining the
model by integrating additional environmental
variables, exploring the use of real-time data
for dynamic prediction, and testing the model
in diverse geographical settings to assess its
generalizability. Additionally, incorporating
community-based data and local knowledge
could enhance the model's accuracy and
relevance in specific contexts. This study
underscores the importance of continued
innovation in predictive modeling to better
prepare for and mitigate the impacts of flash
flood hazards.
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