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ABSTRACT

This study investigates the spatio-temporal patterns of drought and their teleconnection with land surface
properties in Yok Don National Park during the dry season using the Temperature-Soil Moisture Dryness Index
(TMDI). This index is derived from the relationship between the Normalized Difference Land Heat Index and Land
Surface Temperature, extracted from Landsat-8 data acquired in the mid-dry season from 2014 to 2023. Results
reveal increasing drought severity starting in 2014, peaking during 2015-2016, and decreasing from 2017 to 2020.
Drought conditions escalated again during 2021-2022 before moderating by 2023. These trends align with in-situ
precipitation data recorded at a nearby meteorological station, highlighting varied impacts on forest types. Areas
covered by deciduous broadleaf forests experienced pronounced drought effects, whereas evergreen broadleaf forests
showed greater resilience. Land surface evapotranspiration rates obtained from NASA’s MOD16A2GF dataset were
used to evaluate TMDI performance. During the dry seasons from 2014 to 2023, TMDI exhibited a consistent
negative correlation with evapotranspiration, with coefficients ranging from -0.55 to -0.70. This demonstrates TMDI's
effectiveness in capturing land surface water availability and assessing drought conditions. The findings provide
crucial insights into drought monitoring and management for Yok Don National Park and other water-scarce regions,
reinforcing TMDI’s value in sustainable forest management and drought mitigation.

Keywords: Drought Monitoring, Yok Don National Park (Vietnam), Temperature-Soil Moisture Dryness Index
(TMDI), Landsat-8 images.

1. Introduction rainfall, leading to dryness and affecting water

Drought is a prolonged period of deficient —resources, agricultural production, and human

livelihoods. Based on its impacts, drought is

*Corresponding author, Email: toandd@huce.edu.vn classified into four maj or types:
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meteorological drought, agrarian drought,
hydrological drought, and socio-economic
drought (Wilhite and Glantz, 1985). Drought
ranks among the most costly and destructive
natural disasters, simultaneously affecting
various sectors and communities. It
contributes to soil deterioration,
shortages, crop failures, wildfires, and other
disasters. Drought significantly impacts
ecological and socio-economic  systems
(Zhong et al., 2019). Combined with extreme
heat, droughts are responsible for a 9%—10%
reduction in global cereal production (Lesk et
al., 2016). In the Netherlands, drought
severely affected multiple sectors, causing
damages estimated between 450 and 2,080
million Euros (EUR) during the summer of
2018 (Philip et al., 2020). In China, annual
agricultural drought losses can reach up to
16,302 million tons, accounting for over 60%
of all grain losses caused by natural disasters
from 1950 to 2016 (Zhang et al., 2019; Cai et
al., 2023). Vietnam is identified as particularly
vulnerable to droughts in Southeast Asia, with
El Nifio events driving moderate to severe
impacts (MONRE, 2019; UNESCAP, 2019;
WorldBank, 2021). Droughts' increasing
severity and duration have profoundly
affected Vietnam's agricultural sector, which
employs over half of the population and
contributes roughly 20% to the nation's GDP
(Le et al, 2021). In early 2016, a severe
drought caused significant economic damage
across 18 provinces, with estimated losses
reaching approximately US$674 million,
equivalent to 0.35% of the country’s 2015
GDP. The drought also left about 2 million
people facing acute water shortages, requiring
urgent humanitarian aid (UNDP, 2016).
Globally, nearly one-third of the population
resides in water-scarce regions, and an
estimated 1.1 billion people do not have

water

reliable access to safe drinking water. Drought
affects about 7.5% of Earth's land area, and its
impact is worsening, with the proportion of
land experiencing severe drought doubling
from the 1970s to the early 2000s (Belal et al.,
2014).  Therefore, monitoring drought
conditions is essential for providing crucial
information that aids in predicting and
mitigating its impacts. It also supports
decision-making in water resource
management, builds resilience against climate
change, and protects vulnerable communities
and ecosystems.

A meteorological drought is a significant
deficiency in precipitation over a specific
period and region. Traditionally, drought
indices determined from in-situ rainfall data
recorded at meteorological stations over long
periods are used to identify drought situations
(Shahabfar and Eitzinger, 2013; Asefjah et al.,
2014). traditional ~ drought
monitoring methods often suffer from data
density and spatial coverage limitations,
focusing on localized areas rather than
offering a complete view of extensive regions.
This dependence on site-specific data makes it
challenging to accurately assess drought
conditions large geographic areas,
reducing the effectiveness of monitoring
strategies (Mishra et al., 2015). As a result,
traditional approaches may not fully capture
the overall scope or severity of drought events
(Fung et al., 2020).

Technological
revolutionized drought monitoring, offering
precise, timely, and comprehensive data
through satellite-based remote sensing,
hydrological and climate models, GIS, spatial
analysis, and machine learning. Remote
sensing stands out due to its extensive
coverage, continuous data  collection,
objectivity, and promptness, making it a

However,

over

advancements have
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leading tool for addressing the limitations of
traditional in-situ methods. It quickly captures
detailed spectral data on land surface features
such as soil moisture, evapotranspiration
rates, vegetation health, and surface
temperatures (Maes and Steppe, 2012). These
parameters are vital for assessing drought
severity and progression, leading to a more
comprehensive understanding of drought
dynamics and better-informed decision-
making (Belal et al., 2014). By integrating
various datasets, remote sensing provides a
complete view of the factors influencing
drought conditions. This capability has
facilitated the development of numerous
models and indices for effectively monitoring
and forecasting droughts across different
spatial scales (Vicente-Serrano et al., 2015).
Remote sensing-based indices for drought
monitoring can be categorized into single and
combined indices. Single indices typically
focus on aspects of drought,
vegetation health, soil moisture, water
availability, and land surface temperature.
These are widely utilized due to their
simplicity and effectiveness. In contrast,
combined indices integrate multiple variables
to offer a more comprehensive approach to
capturing drought dynamics. Examples
include the Normalized Difference Vegetation
Index (NDVI), Enhanced Vegetation Index
(EVI), Vegetation Condition Index (VCI), and
Land Surface Temperature (LST) (Cai et al.,
2023; Mullapudi et al., 2023). Other indices,
such as the Normalized Difference Moisture
Index (NDMI) (Das et al., 2023), the
Normalized Drought Dryness Index (NDDI)
(Gu et al, 2007), Modified Normalized
Drought Dryness Index (MNDDI) (Nguyen et
al., 2024), and Temperature Vegetation
Dryness Index (TVDI) (Sandholt et al., 2002),
were developed to enhance accuracy and

such as
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applicability in different contexts. Among
these, NDVI is particularly well-known for its
effectiveness in evaluating vegetation health.
It is widely used to determine whether plants
are experiencing water stress or drought
conditions. NDVI can function independently
or be integrated into broader frameworks for
drought assessment, making it a key indicator
for tracking vegetation health and
understanding drought patterns. However,
NDVI's sensitivity to early signs of water
stress may be limited, as it responds slowly
when plant leaves remain green despite water
shortages. Thus, while NDVI provides
valuable insights into drought conditions, its
effectiveness can vary based on the specific
landscape characteristics being analyzed (Van
Hoek et al., 2016). Additionally, factors such
as plant diversity, soil types, and varying
environmental conditions can affect how well
NDVI captures the impact of drought.

In 2019, the Normalized Difference Latent
Heat Index (NDLI) was introduced and
proven to be an effective new method for
evaluating surface water availability (Liou et
al., 2019). This index utilizes spectral
reflectance data from the green, red, and
shortwave infrared (SWIR 1) channels,
offering valuable insights into surface water
presence and moisture distribution across
different land covers. Recognizing the role of
temperature in  drought analysis, the
Temperature-Soil Moisture Dryness Index
(TMDI) was developed by examining scatter
plots of LST and NDLI values (Le and Liou,
2022). The TMDI integrates LST and NDLI
data to assess surface water shortages
thoroughly, enhancing drought prediction and
severity evaluation. Derived solely from
remote sensing data, the TMDI improves the
precision and reliability of  drought
monitoring, particularly in areas with limited
ground-based observations (Le and Liou,
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2021). Global warming and climate change
are increasingly  exacerbating  drought
conditions in arid and drought-prone regions,
including parts of Vietnam. The impact of
drought is especially severe in areas with
minimal seasonal vegetation, challenging
highland terrain with low water retention, and
water sources that rely solely on precipitation
(Le et al., 2021).

Yok Don National Park,
Vietnam’s  western  Central  Highlands,
exemplifies these challenges. The park
experiences intense solar radiation, high
temperatures, and fluctuating rainfall patterns
throughout different areas and seasons. It
receives significant rainfall during the wet
season but faces extreme precipitation deficits
in the dry season (Duong and Son, 2024).
These climatic factors contribute to the
prevalence of deciduous dipterocarp forests
(DDF), which lose their leaves in the dry
season. Consequently, the park is highly
vulnerable to forest fires and experiences
slower recovery if the rainy season is delayed
or if rainfall is reduced (Nguyen et al., 2015).
This vulnerability highlights the critical need
for effective drought monitoring. It is essential
to evaluate how water scarcity impacts
vegetation health, pinpoint at-risk areas, and
develop adaptive strategies to strengthen the
park’s resilience to water stress. Additionally,
drought monitoring supports biodiversity
conservation and  fosters  sustainable
development for local communities.

This study examines the application of the
TMDI index to assess drought conditions in
Yok Don National Park from 2014 to 2023
using time-series remote sensing data. By
enhancing our understanding of drought
trends and implementing suitable measures,
this study aims to improve water resource
management, mitigate ecological damage, and
support this vital natural area's long-term
preservation and sustainable use. The article is
organized into five sections: The introduction

situated in

provides the background and objectives; the
second section describes the study area and
datasets; the third explains the TMDI
calculation method; the fourth presents and
analyzes the results; and the final section
summarizes the findings and conclusions.

2. Materials
2.1. Study area

Yok Don National Park, the second largest
special-use forest in Vietnam, is located in the
western Central Highlands, spanning from
12°45” to 13°10°N in latitudes and 107°29’ to
107°48’E in longitudes. The park is
approximately 38 km Northwest of Buon Ma
Thuot city, primarily within Dak Lak
province, with a small extension into Dak
Nong province (Fig. 1). It covers a total area
of 115,545 hectares, including 80,947 hectares
of strictly protected area, 30,426 hectares
designated for ecological restoration, and
4,172 hectares for administrative and service
purposes. Additionally, a buffer
surrounding the park encompasses 133,890
hectares, which includes the neighboring
communes (EVNNPT, 2021).

Yok Don National Park is characterized by
a predominantly flat landscape, with an
average elevation of approximately 200
meters. The terrain also features some low
hills and mountains, with Yok Don Mountain
being the highest point at 482 meters (Nguyen
et al., 2015). The park experiences a tropical
monsoon climate, marked by a rainy season
from May to October and a dry season
extending from November to April of the
following year. The average annual
temperature ranges from 24°C to 26°C, with
May being the hottest month and January the
coldest. The park experiences relatively low
rainfall, averaging about 1,500 mm annually
(Duong and Son, 2024). Rainfall is unevenly

zone
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distributed throughout the year, peaking
at 280 mm in June and typically experiencing
no precipitation in January. Humidity
levels in the park remain low, averaging
76% during the rainy season
(https://tour.yokdonnationalpark.vn/vuon-

quoc-gia-yok-don.html). The park's location
deep within the Central Highlands basin
contributes to its low humidity and
precipitation. The eastern side is shielded by

mountains ranging from 500 to 1,000 meters,
while the western border is adjacent to the
Cambodian mainland. This geographical
setting places the park directly under the
influence of the southwest monsoon,
Which, when strong, creates a hot and dry
climate, leading to significant
evaporation, averaging 1,078 mm annually
(https://tour.yokdonnationalpark.vn/vuon-
quoc-gia-yok-don.html).
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Figure 1. The location of Yok Don National Park

Yok Don National Park is renowned for its
high biodiversity, hosting over 1,000 plant
species and approximately 650 animal
species, including numerous endemic species
of flora and fauna (Cuong and Huynh, 2022).
Due to its specific geographical location and
climatic conditions, a distinctive dipterocarp
forest ecosystem, the only one of its kind in
Vietnam, has developed in the park. The
park's vegetation primarily consists of
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deciduous and semi-evergreen forests, with
evergreen forests covering smaller areas,
mainly on hills and along watercourses.
Yok Don National Park's topography, coupled
with its consistently hot and dry climate from
November to April, results in relatively sparse
vegetation in the open deciduous forests. The
upper tree layer, dominated by species from
the Dipterocarpus family, is generally tall and
sparse, featuring broad leaves that emerge
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during the rainy season and shed during the
dry season. These trees have developed thick,
often cracked bark as an adaptation to
withstand forest fires and drought. In contrast,
herbaceous plants near the ground, which
cannot retain water effectively, frequently wilt
and are susceptible to burning during the dry
season but regenerate vigorously with the
onset of the rainy season. The harsh water
regime results in a low density of mature
woody plants, which shed their leaves during
the dry season, further contributing to low
vegetation cover and faster evaporation rates.
The increasing impact of climate change
exacerbates drought conditions in the Central
Highlands in general and Yok Don National
Park in particular. The intensification and
prolongation of droughts will likely disrupt
habitats for both plants and animals, leading
to population declines and posing a significant
threat to numerous rare and endangered
species. Drought monitoring is essential for
evaluating the effects of water scarcity on
vegetation health, identifying at-risk areas
early, and devising adaptive management
strategies to enhance the park's resilience to
water stress. It also assists in maintaining
biodiversity and promoting sustainable
development for local communities.

2.2. Materials

This study focuses on monitoring drought
conditions in Yok Don National Park from
2014 to 2023, utilizing the TMDI derived
from satellite-based remote sensing data. The
primary dataset for this analysis consists of
Landsat-8 images, leveraging data from the
Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS) for comprehensive
monitoring. These images are particularly
valuable due to their multi-spectral bands,
ranging from visible to thermal infrared,
enabling the calculation of spectral indices
(https://www.usgs.gov/landsat-

missions/landsat-8). The thermal band data
from Landsat-8 is specifically used to derive
LST, a crucial parameter for understanding
environmental changes and drought conditions.
For a comprehensive analysis, Landsat-§ OLI
imagery of Yok Don National Park was
systematically acquired for the dry seasons
during the study period via the Google Earth
Engine (GEE) platform (Pham-Duc et al,
2023). In addition, this study incorporates
evapotranspiration (ET) products derived
from the Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite data
(https://modis.gsfc.nasa.gov/data/dataprod/mo
d16.php). These products provide valuable
information on the
transferred to the atmosphere from the Earth's
surface through transpiration and evaporation.
The MODIS ET data is instrumental in
assessing the reliability and accuracy of the
TMDI index for drought monitoring. ET data
collection synchronized with the
acquisition of Landsat-8 OLI imagery to
maintain temporal consistency. A detailed
summary of the Landsat-8 OLI images and
MODIS ET data utilized in this research is
presented in Table 1.

volume of water

was

To further strengthen the validation of the
study's findings, precipitation data from the
Buon Me Thuot meteorological station
(108.050°E, 12.667°N) in Dak Lak province
was acquired from 1994 to 2023. This station
is significant due to its proximity to the study
area and is managed by the Vietnam General
Department of Meteorology and Hydrology
(http://vnmha.gov.vn/).
hourly using barometers, the precipitation data

Initially ~ collected
were aggregated into monthly datasets. This

study primarily utilizes the annual
precipitation data to assess the accuracy of the

TMDI in monitoring drought events.
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Table 1. Details of satellite remote sensing images used in this study

Satellite sensor Band and Descriptions Products resoSlll: :lit(:il (m) reszlilzgzlkﬁay) Ach')‘;stglO“
Band 1 Coastal Aerosol
Band 2 Blue
Band 3 Green 03/03/2014
Band 4 Red 30 x 30 06/03/2015
Band 5 Near-Infrared Level 2 08/03/2016
Landsat-8 OLI, | Band 6 SWIR 1 Collection, 5 16 11/03/2017
TIRS Band 7 SWIR 2 Tier1 10/02/2018
Band 8 Panchromatic 01/03/2019
(PAN) 15 %15 03/03/2020
Band 9 Cirrus 30 30 06/03/2021
Band 10 TIRS 1 100 % 100 g%ggggg
Band 11 TIRS 2 >
MODIS ET (Evapotranspiration) MODI16A2GF| 500 x 500 8

3. Methodologies

3.1. Temperature-Soil Moisture Dryness Index

TMDI was proposed by Le and his team in
2021 as an indicator to assess dryness
conditions across various land surface
severities (Le and Liou, 2021, 2022). This
index is handy in regions where temperature
and surface characteristics play a significant
role in determining the severity of droughts.
TMDI sets itself apart by considering the
relationship between NDLI and LST and their
fluctuations. It recognizes that while
temperature offers a time-sensitive indication
of surface water, relying solely on temperature
for monitoring water scarcity might be
influenced by varying water features across
different land covers. By incorporating NDLI
and surface temperature, TMDI enhances the
effectiveness of surface dryness monitoring,
taking advantage of the sensitivity of visible,
shortwave-infrared, and thermal infrared
bands to water, which, in turn, expands its
applicability.

Instead of treating LST and NDLI as
independent measurements, TMDI leverages
their correlation, which is visually represented
through a scatter plot within a triangular space
on a two-dimensional coordinate system. This
triangular space represents three distinct
conditions: the upper left corner denotes arid
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areas with sparse vegetation, characterized by
low NDLI values and high LST wvalues; the
lower left corner signifies regions with moist
soil, indicated by low values for both NDLI
and LST; and the bottom right corner reflects
areas with high moisture content and abundant
water availability, depicted by high NDLI
values and low LST values (Le et al., 2023).
This connection between LST and NDLI can
be mathematically expressed through the
TMDI formula as follows:

TMDI = (LSTs — LSTyin) / (LSTax — LSTmin) (1)

LSTs denote a specific pixel's surface
temperature value (°C), and LST,, and
LST,.;, correspond to the highest and lowest
surface temperatures observed among pixels
sharing identical surface conditions (i.e., a
uniform NDLI value).

To build this formula, LST and NDLI are
combined first to determine the highest and
lowest surface temperature values for distinct
surface conditions, all within a small range of
NDLI. Linear fits are then applied to the
NDLI data, resulting in equations for the dry
edge (Eq. 2) and the wet edge (Eq. 3) within
the defined feature space.

LSTyin = a1 + by * NDLI 2)

LSTypax = @y + by * NDLI 3)

Here, a;, b;, and a,, b, represent the
coefficients of the wet and dry edge equations,
respectively.
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3.2. Land Surface Temperature

Land surface temperature data for Yok Don
National Park, spanning the period from 2014

to 2023, was derived from Landsat 8
OLI-TIRS Collection 2 Level 2
datasets  using the GEE  platform

(https://developers.google.com/earth-

engine/datasets/catalog/LANDSAT LCO08 CO
2 T1 L2). These datasets were produced
from Landsat Collection 2 Level-1 thermal
infrared bands and supplemented with
additional information such as Top of
Atmosphere  (TOA) reflectance, TOA
Brightness Temperature, data from the
Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) Global
Emissivity Database (GED), NDVI, and
atmospheric profiles encompassing
parameters such as geopotential height,
specific humidity, and air temperature
(Jimenez-Munoz et al., 2014; Ru et al., 2021).

3.3. Normalized Difference Latent Heat Index

The Normalized Difference Latent Heat
Index (NDLI) was developed to assess latent
heat flux and surface water presence. It
involves combining spectral data from band 3
(Green), band 4 (Red), and band 6 (Shortwave
Infrared - SWIR 1) of Landsat imagery to
calculate NDLI (Liou et al., 2019). The NDLI
is formulated as in equation (4):

NDLI = (B3 —B4)/(B3 + B4 + B6) (4)
where B3, B4, and B6 correspond to the
Green, Red, and SWIR1 bands of Landsat 8
OLI dataset, respectively.

3.4. Validation

Evapotranspiration (ET), a key metric for
assessing surface water availability, plays a
vital role in drought evaluation. ET provides
valuable information on the volume of water
transferred to the atmosphere from the Earth's
surface through transpiration and evaporation.
During periods of drought, reduced rainfall

lowers soil moisture, causing ET rates to
surpass precipitation levels. This imbalance
results in water stress for plants and
ecosystems. Consequently, areas with low ET
values can be considered drier than those with
higher ET values. As a result, ET values play
a crucial role in drought monitoring studies
and have been widely used as reference data
to validate the accuracy of drought analysis
results (Maes and Steppe, 2012; Nguyen et al.,
2024). In this study, ET data, synchronized
with the acquisition of Landsat-8 OLI
imagery, were used to evaluate the
effectiveness of TMDI in drought assessment
during the selected period in Yok Don
National Park.

A resizing technique is implemented to
upscale the 30-meter resolution TMDI maps
to a 500-meter resolution, aligning them with
the ET product maps. This technique
aggregates pixels with smaller spatial
resolutions into pixels with larger resolutions
using statistical methods. From the 30 m
resolution TMDI dataset, which falls within
the coverage of a 500 m resolution ET pixel,
statistical measures such as the mean, median,
or mode can be used to represent the new 500
m resolution TMDI pixel. In this
study, the mean value was selected. To
the processing workflow, the
“image.reduceResolution(.)” function,
provided by the GEE platform, was utilized to
generate 500 m resolution TMDI maps,

automate

enabling  correlation analysis  between
TMDI and ET. Details of this technique
can be found at the following link:

https://developers.google.com/earth-
engine/guides/resample. The 500 m resolution
TMDI maps will be presented in Figure A-1
of the appendix.

A workflow was proposed to follow the
calculation process easily, as presented in
Fig. 2.
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Figure 2. The workflow for investigating the spatiotemporal dynamics of drought over
Yok Don National Park using TMDI

4. Results & Discussion
4.1. LST & NDLI correlation

This study examined the association
between land surface temperature and water
availability across various land cover types, as
represented by the NDLI. Initially, samples
were gathered to establish the connection
between NDLI and LST at the dry and wet
edges. Within this process, each 0.05 interval
of NDLI was considered representative of a
specific surface condition, and all LTS data
within the selected NDLI range
included. To minimize the influence of
outliers, only LST values that corresponded to
the selected NDLI range and adhered to the
principles of normal distribution statistics
were retained, specifically, as in equations (5)
and (6):
|LST; — LST| < 3.5 o7 if n > 2000

WEre

)
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|LST; — LST| < 3 a,57 if 300 < n < 2000 (6)
where LST and o,gr are the mean and
standard deviation of the land surface
temperature, respectively, for a specific
surface condition represented by a selected
range of NDLI; n is the number of LST values
within this range.

Samples are excluded when the number of
LST observations is fewer than 300. Finally,
the values of NDLI, LST,., LST.., and
LST,can are used to determine the coefficients
in equations (2) and (3). The correlations
between LST and NDLI were analyzed for
2014-2023 wusing a triangular/trapezoidal
space (Fig. 3). In each panel of Fig. 3, dot
colors represent the density of specific surface
conditions linked to water availability and
temperature. For a narrow NDLI range
indicating a particular water availability, the
upper black triangle with high LST signifies
dry conditions.
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Figure 3. Scatter plots show the relationship between NDLI and LST over Yok Don National Park during
the dry season from 2014 to 2023
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In contrast, the lower black triangle with
low LST indicates wet conditions. Magenta
diamonds represent the mean LST, reflecting
average surface conditions. The magenta solid
line, black dashed line, and black dotted line
correspond to the regression lines for each
year's average, dry-edge, and wet-edge
conditions of the land surface, respectively.
Text annotations on the panels provide the
parameters of the three linear regression
models and their corresponding correlation
values.

The results revealed consistent negative
correlations between LST and NDLI,
suggesting that higher water availability
corresponds to lower surface temperatures.
This provides significant insights into how
different land cover types influence surface
temperatures  about  water  availability.
Furthermore, the analysis showed that LST
exhibits consistent fluctuations within specific
NDLI value ranges. “Dry points” displayed
higher LST, whereas “wet points” exhibited
lower LST. This observation implies that land
cover properties play a crucial role in
modulating the impact of water content on
surface temperatures. Significant correlations
were observed between LST and NDLI along
the dry edge, indicating that regions
experiencing higher temperatures exhibit a
stronger relationship between temperature and
water content. This suggests that variations in
water availability more profoundly affect
surface temperatures in areas with elevated
temperatures. This finding is particularly
valuable for understanding the interplay
between land surface temperature and water
availability across diverse land cover types.

In each panel, the color of each dot
represents the density of specific surface
conditions associated with existing water
availability and temperature. For a small
NDLI range representing a particular level of
surface water availability, the upper black

triangle with high LST indicates dry
conditions. In contrast, the lower black
triangle with low LST represents wet
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conditions. Magenta diamonds denote the
mean LST, indicating the average surface
conditions. The magenta solid line, black
dashed line, and black dotted lines represent
the regression lines for the land surface's
average, dry-edge, and wet-edge conditions,
respectively, for each year.

4.2. Drought distribution

By TMDTUI’s principle, its values range from
0 to 1, where 1 corresponds to the dry edge,
and O signifies the wet edge (Le and Liou,
2022). Higher TMDI values reflect more
severe drought conditions, while lower values
suggest milder surface droughts. Within the
LST-NDLI feature space, the triangular
framework illustrates three distinct scenarios:
First, the upper left corner represents arid
conditions with barren soil, characterized by
low NDLI and high LST values; second, the
lower left space signifies moist soil
conditions, marked by both NDLI and LST
values at their minimum; and lastly, the
bottom right space indicates saturated soil
with  the highest water availability,
exemplified by high NDLI values and low
LST values.

In areas of bare soil, surface temperature
changes are strongly linked to variations in
water availability. As one moves from the top-
left to the bottom-left corner of the triangular
feature  space, water exchange via
evapotranspiration gradually increases,
reflecting a transition from minimal to
maximal interaction between the surface and
the atmosphere. The bottom-right region
exhibits abundant surface water availability,
corresponding to a water stress index 0. The
oblique side of the triangle represents the "dry
edge," characteristic of drought conditions,
whereas the triangle's base signifies a "wet
edge" state, indicative of saturated soil
conditions.

To monitor drought in the Yok Don
National Park, the TMDI maps were
generated specifically for the dry seasons
from 2014 to 2023 (Fig. 4). The
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comprehensive analysis of these maps
revealed a clear pattern illustrating the
evolution of drought conditions over the
years. Initially, there was a noticeable uptick
in drought severity starting in 2014,
intensifying further in 2015, and reaching its
peak in 2016, marking the most extreme
drought during the study period. This
observation is consistent with reports of a
worsening drought crisis and widespread
water shortages across the Central Highlands

region, particularly in areas cultivating
A 2014

g

12°56'0'N 13°4'0°N

12°48'0"N

L UL Kiometers
012 46 8

perennial industrial crops like coffee and
black pepper. Approximately 70% of rainfed
or minimally irrigated agricultural land was
severely affected, with 7,100 hectares
abandoned and over 95,000 hectares
experiencing irrigation deficiencies (CCAFS-
SEA, 2016). Following the severe drought in
2016, dry areas were reduced between 2017
and 2020. However, signs of worsening
drought conditions reappeared in 2021,

persisted through 2022, and began to diminish
by 2023.

107°36'0"E 107°44'0'E Legend
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Figure 4. The spatial distribution of TMDI over Yok Don National Park during the middle of the
dry season from 2014 to 2023

The varying patterns of drought conditions,
as revealed by the TMDI maps, highlight the
intricate interactions among diverse climatic
factors. Due to the absence of meteorological
stations within the Yok Don National Park,
precipitation data from the nearest available
station, Buon Ma Thuot (BMT), was utilized
to validate the results obtained from the TMDI
index regarding drought occurrences. The
findings indicate that the drought patterns
identified by TMDI align with the trends
observed in actual precipitation data collected
from the BMT meteorological station. Annual

rainfall figures from 2013 to 2023, ranging
from 1,511.9 to 2,108 mm per year, illustrate
the fluctuating nature of precipitation in the
region (Fig. 5). An analysis of rainfall trends
recorded at the BMT station revealed two
distinct periods of decreasing precipitation,
notably in 2015 and 2016, followed by
another decline in 2022. This temporal
analysis strongly supports the reliability of the
TMDI index in identifying drought periods in
the study area.

The TMDI maps, shown in Fig. 4, focus on
Yok Don National Park, offering crucial
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insights into drought occurrences during the
middle dry season from 2014 to 2023. Spatial
analysis reveals significant ~ drought
characteristics across the study area, with
notable interannual variations in the extent of
drought-affected surface areas, particularly in
2016, 2021, and 2022. The northern and
central regions of the park consistently
experienced  severe  drought  impacts
throughout the study period. To better
understand the relationship between drought
and land cover characteristics, the land cover
maps adopted from previous research by
Nguyen et al. (2015, 2017) were used to
analyze drought patterns across different
forest systems. The findings revealed that
drought-prone areas predominantly correspond
to regions covered by poor- to medium-density
deciduous dipterocarp forests, as shown in
Figure A-2. Conversely, areas with low TMDI
values are situated at higher-altitude locations,
characterized by dense evergreen broadleaf
forests. In other regions, including the east,
southeast, and southwest areas, TMDI trends
varied over the years. This variability arises
from the mosaic composition of evergreen
broadleaf and rich deciduous dipterocarp
forests in these areas. Vegetation in these
regions tends to remain lush following years of
abundant rainfall but may become arid when
rainfall in the preceding year is insufficient, as
illustrated in Fig. 5.

+ Annual dat;
_ 600 | g Monthy datn
E 700 Adecreasing trend
in precipitation
+ * » .

T T T T
A decreasing trend
in precipitation

n
e
=
=3

1

500 R4

ecipitation (m
,

3 400

300

8]

Monthly p
S
o 8 8
7

- I
2013 2014 2015 2016 2017 2018 2018 2020 2021 2022 2023 2024
Time

Figure 5. Variations in precipitation were recorded
at the Buon Ma Thuot (BMT) meteorological
station, the closest station to Yok Don National
Park. Blue dots and red diamonds represent
monthly and annual precipitation data from 2013
to 2023
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Furthermore, this study highlights the
critical role of forest ecosystems in shaping
drought dynamics. Deciduous broadleaf
forests are particularly susceptible to drought
due to their seasonal leaf-shedding behavior,
which limits their ability to retain moisture. In
contrast, evergreen forests, with their multiple
canopy layers and high water-holding
capacity, exhibit greater resilience to drought.
Additionally, the uppermost canopy leaves of
evergreen trees  utilize  water more
conservatively than those of drought-
deciduous trees (Ishida et al., 2013). As a
result, regions dominated by deciduous trees
are more vulnerable to water scarcity,
reinforcing the finding that drought primarily
affects areas covered by deciduous broadleaf
forests.

These findings are crucial for identifying
conservation areas highly vulnerable to
drought. They provide a foundation for
targeted interventions, such as reforestation,
water conservation, forest fire prevention, and
adaptive management strategies, particularly
in deciduous dipterocarp forests, prone to
drought and at risk of burning due to their
limited water retention capacity. By
understanding the spatial distribution of
drought impacts, park managers can enhance
ecosystem resilience, preserve biodiversity,
and maintain the park's ecological functions.
In the face of climate change, this work
supports sustainable forest management and
long-term conservation planning.

4.3. Validation

Given the absence of ground-based
measurements within the study area, this
study utilized NASA's ET products as
reference data to assess the effectiveness of
TMDI in evaluating water deficit dynamics
(Fig. 6). The ET values used in this study
were averaged from MODIS-derived products
over the first three months of each year,
corresponding to the mid-dry season in
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Yok Don National Park. During this period,
rainfall is minimal, and drought conditions
peak. The Landsat-8 OLI images were
captured in late February or early March,
when drought conditions are most severe,
significantly affecting vegetation responses.
Observations of temperature and water
availability on the surface reflect the
cumulative effects of prolonged drought since
the onset of the dry season. Therefore,
averaging ET wvalues over the first three
months of the year reduces short-term
fluctuation noise and enhances the reliability
and objectivity of the research findings. This
approach  provides a more accurate
representation of drought impacts on
vegetation as reflected by the TMDI index.

To address the spatial resolution mismatch
between the TMDI maps and ET products, the
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12°56'0"N

12°48'0"N

W
UL TKilometers.
012468

resizing  technique presented in  the
methodology section is applied to upscale the
30-meter TMDI maps to a 500-meter
resolution (Figure A-1), aligning them with
the ET product maps. Subsequently, the
correlation between TMDI and ET is analyzed
based on randomly selected points. The
computed  correlation  coefficients  are
presented in Fig. 7, demonstrating a consistent
inverse relationship between TMDI values
and ET rates. Specifically, correlation
coefficients ranging from -0.55 to -0.70 were
observed between TMDI and three-month ET
data throughout the study period from 2014 to
2023. These stable negative correlations
between TMDI-derived drought assessments
and actual ET rates highlight the effectiveness
of TMDI in accurately capturing land surface
water availability.

107°36'0"E 107°44'0"E ET (kg/m*2)
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Figure 6. The spatial distribution of average ET, calculated from MODIS-derived products over
Yok Don National Park, represents the mean values for the first three months of each year during the
mid-dry season from 2014 to 2023
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Figure 7. The correlation coefficients between ET and TMDI from 2014 to 2023. In each panel,
black dots represent the ET and TMDI values at the same location, and the red line shows the linear
regression model between these two variables. r stands for the correlation coefficient,
and the accompanying number represents its value
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The negative correlations in Fig. 7 suggest
that during periods identified by the TMDI as
drought-prone, there are concurrent declines
in ET values. The sensitivity of TMDI to
fluctuations in land cover water content due to
water scarcity is prominently evidenced by its
consistent negative association with the
process of water moving from the surface to
the atmosphere. This indicates that TMDI
effectively captures the reduction in water
availability across the Yok Don National Park
landscape during drought periods. The
effectiveness of TMDI in reflecting how the
Earth's surface reacts to drought events is
highlighted by its ability to capture the
intricate interplay between precipitation and
water exchange between land and air. TMDI
effectively reflects changes in  water
availability and corresponds with observed
variations in evapotranspiration, offering a
deeper insight into drought dynamics. This
demonstrates the efficiency of TMDI in
capturing variations in surface water
availability. By providing a quantitative
measure of drought severity and its spatial
distribution, TMDI serves as a valuable tool
for informing drought monitoring and
management efforts in Yok Don National Park
and other regions facing water scarcity
challenges.

5. Conclusions

This study successfully employed the
Temperature-Moisture Drought Index to
assess drought conditions in Yok Don
National Park from 2014 to 2023 using
remote sensing data. The study provided a
detailed understanding of drought dynamics
across various land cover types by analyzing
the relationship between land surface
temperature and water availability represented
by the Normalized Difference Latent Heat
Index.

The results revealed a gradual escalation in
drought severity beginning in 2014, peaking
in 2016 with the most severe drought of the

study period. A subsequent decrease in
drought intensity was observed from 2017 to
2020, followed by escalating dry conditions
from 2021 to 2022, which then moderated by
2023. The drought trends identified by the
TMDI index were consistent with actual
precipitation data collected from a nearby
meteorological station. Additionally, the
results demonstrated differences in water
scarcity among various forest types. The
findings indicated that severe drought impacts
were predominantly observed in areas covered
by deciduous broadleaf forests, which
naturally shed leaves during the dry season. In
contrast, evergreen broadleaf forests exhibited
greater drought resilience.

Furthermore, the surface
evapotranspiration rate, a reliable indicator of
surface water availability and a key factor in
drought assessment was used to validate the
effectiveness of TMDI. The analysis revealed
a consistent negative correlation between
TMDI values and land surface
evapotranspiration rates, with correlation
coefficients ranging from -0.55 to -0.70. This
finding confirms that TMDI is an effective
tool for accurately capturing land surface
water availability and assessing drought
conditions. In conclusion, the application of
TMDI in this study provided a reliable and
detailed assessment of drought patterns,
offering wvaluable insights for drought
monitoring and management efforts in Yok
Don National Park and other regions facing
water scarcity challenges.
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Figure A-1. Resampled TMDI maps of Yok Don National Park during the middle of the dry season
from 2014 to 2023
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LAND COVER MAP OF YOK DON NATIONAL PARK IN
CENTRAL HIGHLANDS OF VIET NAM IN 2004

LAND COVER MAP OF YOK DON NATIONAL PARK IN
CENTRAL HIGHLANDS OF VIET NAM IN 2011
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Figure A-2. Land cover maps of Yok Don National Park for 2004 (a), 2011 (b), and 2015 (c).
The land cover maps for 2004 and 2011 were published by Nguyen et al. (2015),
while the 2015 map was published by Nguyen et al. (2017)
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