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ABSTRACT

The Mekong Basin is the most critical transboundary river basin in Asia. This basin provides an abundant source
of fresh water essential for the development of agriculture, domestic consumption, and industry, as well as for the
production of hydroelectricity, and it also contributes to ensuring food security worldwide. This region is often
subject to floods that cause significant damage to human life, society, and the economy. However, flood risk
management challenges in this region are increasingly substantial due to conflicting objectives between several
countries and data sharing. This study integrates deep learning with optimization algorithms, namely Grasshopper
Optimisation Algorithm (GOA), Adam and Stochastic Gradient Descent (SGD), and open-source datasets to identify
the region of probably occurring floods in the Mekong basin, covering Vietnam and Cambodia. Various statistical
indices, namely Area Under the Curve (AUC), root mean square error (RMSE), mean absolute error (MAE), and
coefficient of determination (R?), were used to evaluate flood susceptibility models. The results show that the
proposed models performed well with AUC values above 0.8, specifying that the DNN-Adam model achieved an
AUC of 0.98, outperforming DNN-GOA (AUC = 0.89), DNN-SGD (AUC = 0.87), and XGB (AUC = 0.82. Regions
with very high flood susceptibility are concentrated in the Mekong Delta of Vietnam and along the Mekong River in
Cambodia. The findings of this study are significant in supporting decision-makers or planners in proposing
appropriate flood mitigation strategies, planning policies, and strategies, particularly in the Mekong River watershed.

Keywords: Flood susceptibility, Mekong basin, deep learning, machine learning, AUC validation, climate change,
hydrological modeling.

1. Introduction damage to infrastructure and people's
livelihoods and  hampering economic
development in regions around the world
(Costache et al., 2024; Mangkhaseum,
Bhattarai, Duwal, & Hanazawa, 2024). In

*Corresponding author, Email: nguyenhuuduy@hus.edu.vn 2021, there were approximately 206 flood

Flooding is considered one of the most
dangerous natural hazards, causing significant
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events worldwide, causing 4,393 deaths and
affecting approximately 29.3 million people
(Maharjan et al., 2024). These flood events
caused damages of USD 74.6 billion, or 30%
of the total economic losses related to natural
disasters. The impacts of flooding on human
life, society, and the economy have increased
by more than 40% in the past two decades and
will tend to increase in the future due to
climate change and urban growth (Maharjan
et al., 2024). In addition, the probability of
flood occurrence is increased mainly in Asia,
Europe, and North America (Wahba, Sharaan,
Elsadek, Kanae, & Hassan, 2024). Among
these regions, Asia is the most affected by
flooding. In 2015, approximately 62.7% of the
total natural disasters were recorded in Asia.
Among natural disasters, floods appear to
account for up to 30%. China, Thailand,
Vietnam, the Philippines, and Indonesia are
the countries most affected by floods (Saleem
Ashraf, Iftikhar, Ashraf, & Hassan, 2017).
Floods significantly impact the society,
economy, human life, ecosystems, and natural
resources. However, it should be noted that
floods also have possible impacts; for
example, they help replenish water sources,
improve soil quality, and supplement aquatic
resources. Therefore, identifying the region
with a high probability of flood occurrence is
an important task and can support the
decision-makers or planners in proposing
appropriate strategies for the sustainable
development of the territory.

Several studies have highlighted that
runoff in the Mekong River basin could
increase 2.5 times during the peak rainy
season, with increased interannual variability
due to climate change (P. Van et al., 2012).
With growing flood risk and low economic
capacity for adaptation, Cambodia and
Vietnam are most exposed to climate change
(Q. Dinh, Balica, Popescu, & Jonoski, 2012).

Flood susceptibility is defined as the
probability that a flood will occur in a region.
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The assessment of flood susceptibility
generally involves two factors: the first
consists of flood drivers (precipitation, storm,
etc.), and the second is the environment
generating the flood. Therefore, flood
susceptibility maps play an important and
effective role in reducing the negative impacts
of floods and providing information on the
characteristics of the corresponding region.
There are four methods to identify flood
susceptibility: (i) hydrodynamic modeling,
(i1) remote sensing and GIS, (iii) multicriteria
decision analysis (MCDA), and (iv) machine
learning.

Hydrodynamic modeling allows simulating
flood events with high precision (Hicks &
Peacock, 2005; Patro, Chatterjee, Mohanty,
Singh, & Raghuwanshi, 2009; Tansar, Babur,
& Karnchanapaiboon, 2020). However, this
model requires much detailed data, such as
meteorology, topography, and land use data.
So, its application is limited to a wide range of
areas. In recent years, with the development
of remote sensing data, particularly the data-
sharing policy of large companies, e.g.,
NOAA, NASA, etc., remote sensing has been
widely applied by researchers to pinpoint
regions at flood risk (Hoque, Nakayama,
Matsuyama, & Matsumoto, 2011; Samanta,
Pal, & Palsamanta, 2018). Although this
method has proven effective, its use depends
on the availability and quality of the data. In
recent years, remote sensing has been
integrated with multicriteria decision analysis
(MCDA) to assess flood susceptibility (Tang,
Zhang, Yi, & Xiao, 2018; Tella & Balogun,
2020). Although MCDA is simple to compute
and understand, it is based heavily on expert
opinions, leading to data redundancy issues.
In recent years, with the development of
computer science and remote sensing data,
statistical models and remote sensing have
been integrated into flood research (Khosravi,
Pourghasemi, Chapi, & Bahri, 2016; Tehrany,
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Pradhan, & Jebur, 2013; Youssef, Pradhan,
& Sefry, 2016). statistical models evaluate
correlations between flood events and their
causes. However, the effectiveness of these
models may be limited by the quality of the
data and the complex characteristics of flood
events. Machine learning models have been
widely used by researchers (Band et al., 2020;
Dodangeh et al., 2020; Madhuri, Sistla, &
Srinivasa Raju, 2021; Zhao, Pang, Xu, Peng,
& Xu, 2019) To solve these problems. Such
models present advantages for resolving
nonlinear relationships of flood events,
particularly in the context of climate change
and increasing urbanization.  Although
machine learning models have significant
potential in constructing flood susceptibility
maps, they also have limitations (Dodangeh et
al., 2020). A model may not fully understand
input data characteristics in different areas,
leading to limited accuracy in flood
assessment. Additionally, the accuracy of a
machine learning model depends on the
quality and quantity of data. Accurately
identifying flooding patterns is difficult,
particularly in areas with complex topography
and coverage (Nguyen, Nguyen, & Bui,
2024). Ultimately, overfitting is a significant
issue for machine learning. (Zhu, Guo, &
Huang, 2024) were used XGBoost, Support
Vector Machine, Multilayer Perceptron, and
Multimodal Deep Learning to evaluate flood
susceptibility in Tianjin in China. (Kurugama,

Kazama, Hiraga, & Samarasuriya, 2024)
Applied five machine learning, namely
gradient boost machine (GBM), extreme

gradient boosting, categorical boosting, logit
boost, and light gradient boosting machine
(LGBM), to assess flood susceptibility in
Rathnapura, Sri Lanka. (Costache et al., 2024)
used hybrid models, ie., Deep Learning
Neural Network-Harris Hawk Optimisation
Index of Entropy (DLNN-HHO-IOE),
Multilayer Perceptron-Harris Hawk

Optimisation Index of Entropy (MLP-HHO-
IOE), and Stacking ensemble-Harris Hawk
Optimization-Index of Entropy (Stacking-
HHO-IOE) to build the flood susceptibility
map of southeast Romania. (Mangkhaseum et
al., 2024) Evaluated flood susceptibility in the
Nam Ngum River Basin in Lao PDF using
machine learning and remote sensing
(Random Forest, Support Vector Machine,
Artificial Neural Networks, and Long Short-
Term Memory. (Wahba et al., 2024)
integrated the ANN and MLP model to
evaluate flood susceptibility in the Kanto
region of Japan. Their performance was
compared with three other machine learning
methods, 1i.e., support vector machine,
gradient boosting, least absolute shrinkage,
and selection operator (LASSO). The
literature shows that although several studies
have applied machine learning to construct
flood susceptibility maps, issues. However,
the construction of flood susceptibility maps
varies from one case to another and depends
on the characteristics of each region
(Bhattarai, Duwal, Sharma, & Talchabhadel,
2024; Kazemi, Mohammadi, Nafooti, Behvar,
& Kariminejad, 2024). Therefore, the
exploration of a highly stochastic environment
motivates our study.

The lack of data and the capacity to
generalize models are significant challenges
when using machine learning. This study
integrates deep learning with optimization
algorithms, namely GOA, Adam, and SGD,
and open-source datasets to identify the region
where floods are probably occurring in the
Mekong basin, covering Vietnam and
Cambodia. Our optimization occurs in the.
Although there are some machine learning
optimization algorithms, this study selects
three optimization algorithms, namely GOA,
Adam, and SGD, to improve the performance
of DNN model. In addition, GOA is
considered an efficient algorithm for solving
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nonlinear problems and fast convergence (Al-
Qadhi, Latip, Chiong, Athauda, & Hussin,
2025; Alirezapour, Mansouri, & Mohammad
Hasani Zade, 2024). Adam is considered a
computationally efficient and fast
optimization algorithm. This is particularly
important for improving the performance of
deep learning models where complex models
train data. In deep learning applications,
gradients may be sparse, meaning that not all
parameters must be updated simultaneously.
Adam handles sparse gradients well because it
uses adaptive learning rates to adjust updates
accordingly (Kang, Zhu, Shen, & Li, 2024;
Sun et al.,, 2024). While SGD updates the
model parameters using the cost function
gradient for each training example. So, it
performs frequent updates based on single or
small batch training examples, which makes it
much faster than other algorithms for large
datasets (Dagal, Tanrioven, Nayir, & Akin,
2025; Hashem, Alaba, Jumare, Ibrahim, &
Abulfaraj, 2024). This study is the first to
evaluate floods in the Mekong watershed.
Evaluating flood susceptibility in the Mekong
River basin, which covers the regions of
Vietnam and Cambodia, is very important
because this region is characterised by dense
river networks and intense agricultural
activity, but is often affected by floods.
Therefore, by assessing flood susceptibility,
decision makers can better manage crops,
irrigation  systems, and  biodiversity
conservation. Ultimately, this study uses open
source datasets; therefore, the models used in
this study can be replicated in other regions of
the world.

2. Study Area

The Mekong River, the largest in
Southeast Asia, has a total basin area of
795,000 km? and spans approximately.
4,909 km. It boasts an average discharge of
14,500 m*/s and flows through six countries:
Lao People's Democratic Republic (25%),
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Thailand (23%), China (21%), Cambodia
(20%), Vietnam (8%) and Myanmar (3%)
(Mrc, 2010). The Mekong River Basin is
home to 70 million people, with more than 17
million concentrated in the Mekong Delta.
Most people in the Mekong River Basin
depend on agriculture, such as rice cultivation,
because the region has a dense irrigation
network. In addition to rice cultivation,
fishing and aquaculture contribute
significantly to the livelihoods of people in
this region and ensure food security. In
addition, industrial zones and urban areas
have also developed strongly in recent
decades, such as large cities such as Can Tho
and Phnom Penh.

The Mekong River Basin (MRB)
experiences diverse climates, from temperate
to tropical monsoons. The Upper Basin,
known as the Lancang River in China,
originates from the glaciated Tibetan Plateau.
The Lower Mekong basin begins downstream
from Yunnan province, passing through the
tripoint of the Golden Triangle to the South
China Sea, exhibiting a tropical monsoon
climate (known as the Lower Mekong basin)
(Mrc, 2010).

The Mekong River basin is characterized
by varied topography, with elevations ranging
from more than 6,000 meters in the Tibetan
Plateau to less than a meter (0.3—0.7 meters)
above sea level in the downstream delta.
(Fig. 1). the basin contains deep-cut valleys
within high mountain regions (Mrc, 2010).
Annual precipitation averages 1300 mm, with
more than 70% occurring during the summer.
The dry period extends from December to
May, with high evapotranspiration rates.

River flow has a distinct seasonal pattern,
with peak flows from June to November
accounting for 80 to 90% of total annual
discharge (K. D. Dinh, Anh, Nguyen, Bui, &
Srinivasan, 2020). This yearly flood season
significantly impacts the environment and the
inhabitants of the Lower Mekong Basin.
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Figure 1. Mekong River Basin

The Mekong Delta is an intricate
hydrological system experiencing significant
environmental challenges, including annual
flooding, drought, and salinity intrusion.
These challenges are projected to intensify in
the context of climate change and rising sea
levels, with prolonged inundation and salinity
intrusion becoming persistent under severe
sea-level rise scenarios (Toan 2014). The
increasing influence of sea-level rise has
altered flood dynamics in the VMD, leading
to heightened flood frequency and saltwater
intrusion in coastal and low-lying areas. Tidal
motion dominates water level variations,
exacerbating flooding in urban and central
deltaic regions (Nghia et al.,, 2022). The

construction  of  large-scale  hydraulic
infrastructure, including extensive irrigation
networks, Dams, and high dyke systems, has
significantly transformed the Mekong Delta's
flood regime (Manh et al., 2015). The high
dyke system, in particular, has disrupted
natural flood retention mechanisms,
contributing to a reduction in upstream
floodwater storage and an increase in peak
water levels in downstream areas (Duc Tran et
al. 2017). Consequently, urban flooding has
intensified due to constrained drainage
capacity and increasing tidal influence (Nghia
etal., 2022)

Floods offer substantial benefits to the
Lower Mekong Basin (LMB). They sustain
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the annual fish catch, particularly in the Great
Lake, support 5.24 million hectares of flooded
wetlands, provide water for irrigation in the
dry season, and fertilize the floodplains with
an annual silt deposit (Im, 2018). The case
study area is located on the lower Mekong
River, in the territory of Vietnam and
Cambodia. The Central Highlands of Vietnam
have the Sesan River in the north and the
Srepok River in the south, which flows into
the Mekong mainstream in Cambodia. The
Phnom Kravanh and Damrei Mountains in the
Southwest and the Dangrek Mountains in the
North surround Cambodia's vast basins and
plains. The higher lands in the northeast and

East of Cambodia border the central
Highlands of Vietnam.
The Tonle Sap Lake regulates the

downstream water by connecting with the
Tonle Sap River, whose flow direction
changes seasonally. During the flood season,
water flows from the Tonle Sap River into the
lake, and during the dry season, water flows
from the lake into the Tonle Sap River. The
Mekong River flows into Vietnam through
two main streams, The Tien River and the
Hau River, which flow into the East Sea
through 9 estuaries. The Mekong River
system in South Vietnam is often called the
Cuu Long River.

3. Materials and methodology
3.1. Flood Inventory Map

Flood inventory is essential when using
machine  learning to  assess  flood
susceptibility. It provides information on past
floods, such as frequency and spatial
distribution. It also presents the relationships
with flood causes (Amiri, Soltani, Ebtehaj, &
Bonakdari, 2024; Widya et al., 2024). The
location of previous floods was used to
predict the flood susceptibility potential
because the region has the same
characteristics as regions affected by previous
floods (Islam & Chowdhury, 2024). The flood
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inventory included areas affected by floods in
the past and those that will potentially be
affected in the future. In this study, the flood
inventory was collected from previous studies.
Additionally, to improve data quality, this
study used the Sentinel 1A image to detect the
flood event in 2010, 2020 in Cambodia and
Vietnam country of Mekong bassin. 291 flood
points covering Vietnam and Cambodia were
collected to build the flood susceptibility
model along the Mekong River.

In machine learning, flood points were
assigned a value of 1, and nonflood points
were assigned a value of 0. The flood and
nonflood data set was divided into training
(70%) and validation (30%). Evaluating
model performance using unpublished
validation data allowed us to obtain more
unbiased results.

3.2. Flood Conditioning Factor

When evaluating flood susceptibility with
high precision, it is necessary to consider
flood conditioning factors. In this study, flood
susceptibility factors were selected based on
the availability of data because one of the
main objectives of this study was the
evaluation of flood susceptibility using free
data so that it can be reproduced in other
regions (Bhattarai et al., 2024; Elghouat et al.,
2024). Additionally, the selection of factors
also depends on characteristics of physical
geography, hydrology, climate, and human
activity in Vietnam and Cambodia. Finally, 12
flood conditioning factors were selected to
assess flood susceptibility in the Mekong
watershed, that is, elevation, curvature, aspect,
slope, river density, road density, rainfall,
Normalised Difference Vegetation Index
(NDVI), Normalized Difference Build-up
Index (NDBI), Normalized Difference Water
Index (NDWI), Landcover/land use (LULC)
and soil type (Fig. 2).



Vietnam Journal of Earth Sciences, 47(3), 315-336

104°00°E 106°00°E 108°0'0"E 104°00°E 106°00°E 108°0°0°E
N N
z z Z &
2 ° s S
S 2 2 2
z = = =
z z z z
s z =3 2
z rS e z
& & o &
Flood
* No * No
2 z z
* Yes = 5] * Yes , £
P [P § g
Elevation (m) El o =1 = | Aspect (degree) =
2433 4 & 360
o, 6 -
—_— -~ - 03060 120 180 240
86 03060 120 180 249 0 -
104°0°0"E 106°0'0"E 108°0'0"E 104°00°E 106°00°E 108°00°C
104°00°E 106°00°E 108°00"E 104°00°E 106°0'0'E 108°00°F
N
z z z =T z
s = s 1 S
2 4 4 g
x 3 % =
2 & &
=3 e 1)
Flood
* No
z
* Yes s * Yes
B
Curvature = Slope (degree)
4.17 . 60
- - 03060 120 180 240 — 03060 120 180 240
-3.65 e ——— KT 0 e B ST "
104°00°E 106°00°E 108°00°E 104°00°F 106°00°F 108°00°F,
104°0'0°E 106°00°E 108°00°E 104°00°F 106°00°F 108°00°F
N
é & Z
s > s
£ 21 [
- = .
z Z
=] L=
= =3
Flood
i) NO > NO ) i \ 2
z z £ . e .. 7
21 « Yes 5] * Yes = fags oil » |5
g1 2 T
= | River density (m/m?) E =
0.258
- 7
60 120 03060 120 180 240
0.021 e B 0 Low:0 e K 111

™ . T ™ T
104°0'0"E 10(,‘6‘0”‘5 108°0'0"E 104°0'0"E 106°00"E 108°0'0"E

Figure 2. Flood conditioning factor used for the flood susceptibility model in the Mekong basin
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Elevation, curvature, aspect, and slope
were extracted from the DEM downloaded
from https://search.asf.alaska.edu/. The river
and road density were constructed using the
river and road system collected from
https://www.openstreetmap.org/. Annual
rainfall in 2021 was collected from
https://chrsdata.eng.uci.edu/. NDVI, NDBI,
and NDWI were computed using the
September 2021 Landsat OLI 08 image
(available at https://earthexplorer.usgs.gov/).
LULC in 2021 was downloaded from
https://www.arcgis.com/apps/instant/media/in
dex.html?appid=£c92d38533d440078f17678e
bc20e8e2&fbclid=IwAROV3ZEdUghn79gN _
INPMtswxWTi2dE1_Gj-
1ZD XcN70PyGMSn3-scE9KY. The soil
type was collected from the Food and
Agriculture Organisation of the United
Nations (FAO) on their  website
https://www.fao.org/soils-portal/soil-
survey/soil-maps-and-databases/en/.

Elevation plays an essential role in
assessing flood susceptibility in any region. A
clear correlation exists between elevation and
floods because floods occur in low-lying areas
(Kurugama et al., 2024). In the study area, the
altitude ranged from 0 to 2433. The low
altitude is concentrated in the Mekong Delta
of Vietnam and along the Mekong River in
Cambodia.

The aspect also plays a key role in
identifying the region where floods are likely
to occur because it directly influences the
flow direction. Furthermore, this factor
significantly affects local climate and soil
humidity (Al-Areeq, Saleh, Ghaleb, Abba, &
Yaseen, 2024). The aspect values ranged from
0 to 360 degrees.

The slope significantly impacts the
probability of flooding because it is directly
related to the surface flow speed. Floods often
occur in flat areas because floods last long
periods, resulting in water stagnation (X. Zhu
et al., 2024).

The curvature reflects the shape of the
ground surface; therefore, assessing the
susceptibility to floods is crucial. Water often
concentrates in areas with concave surfaces,
so these areas are susceptible to floods (K.
Zhu et al., 2024).

River density is a vital hydrology factor in
identifying the regional probability of flood
occurrence. It is directly related to the speed
of flow accumulation and surface exposure to
overflowing water. Because the type of flood
is riverine, floods tend to occur in the region
with high river density (Maharjan et al.,
2024).

Distance to the road is a vital flood
conditioning factor for identifying flood
regions because it directly affects the surface
infiltration capacity (Islam & Chowdhury,
2024; Narendra et al., 2024). The study
region, the Mekong Delta of Vietnam, and the
river in Cambodia present a high road density.

Land use plays an essential role in
identifying water flow and modifies the
sedimentation capacity, directly affecting the
probability of flood occurrence. Construction
regions are more susceptible to floods than
forest regions due to their infiltration capacity
(Hitouri et al., 2024; Narendra et al., 2024).

The type is selected to analyze or evaluate
the flood occurrence in a region because it
influences the infiltration capacity, which
significantly affects the capacity to generate
precipitation and runoff (Jahanbani, Vahidnia,
Aghamohammadi, & Azizi, 2024; Rashidiyan
& Rahimzadegan, 2024).

NDVI indicates the density of vegetation
in a region. This factor influences the water
infiltration capacity and volume of surface
water. Generally, an area with high vegetation
density reduces the probability of flood
occurrence by improving water retention and
infiltration (Yaseen, 2024). In contrast, the
NDBI is the construction density. Increase
impermeable surfaces and surface water
volume. Therefore, the built area increases the
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probability of flooding in a region (Hoang &
Liou, 2024).

NDWTI is the water content of the soils. A
high NDWI value indicates a high water
content in the soil, identifying water-saturated
regions where flooding is more likely (Widya
et al., 2024).

In the study area, the elevation changes
significantly, increasing towards the north and
East of Cambodia and the west of Central
Highlands. Terrain elevation directly affects
the curvature of the terrain. Plains and coastal
plains have a smaller curvature than
mountainous areas, especially the area around
Tonle Lake, mountainous areas of western
Cambodia, and the upper reaches of the Sesan
and Srepok river basins of Vietnam. The
change in elevation of the terrain directly
affects the distribution of areas likely to be
flooded.

Rainfall is one of the factors that directly
affect floods. In the Mekong River basin,
heavy rain is concentrated quickly, rapidly
increasing river water levels and creating

flood conditions. Heavy rainfall in a short
period combined with deforestation and
urbanization increases the flood likelihood
(Minh et al., 2024; Wood et al., 2024). In the
study area, vegetation cover is often
concentrated in mountainous regions and
upstream of river tributaries such as the Tonle
Lake area. Therefore, the NDVI index in these
areas is high. Meanwhile, urban areas often
develop in plains and plateaus, increasing the
NDBI index (Do, Nguyen, & Do, 2024; Park,
2024).

3.3. Flood susceptibility modeling

The identification of regions where floods
probably occur in the Mekong watershed had
four steps: (i) preparation of data, including
flood inventory, and preparation of
flood conditioning factor  preparation;
(i1) construction of deep learning and machine
learning models; (iii) validation of proposed
models; and (iv) analysis of flood
susceptibility in the Mekong basin, covering
Vietnam and Cambodia (Fig. 3).
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Figure 3. Methodology of the study
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(i) Data preparation: the data used in this
study includes flood inventory and flood
conditioning factors because one of the
objectives was to build a flood susceptibility
model with free data to reproduce in other
regions. Therefore, the flood inventory in this
study was collected from previous studies and
satellite images. Ultimately, 291 flood points
and 241 nonflood points were collected and
used in the machine-learning model as input
data. The conditioning factors include 12
factors, i.e., elevation, curvature, aspect, slope,
river density, road density, NDBI, NDVI,
NDWI, land use/land cover, and soil type. The
data sources cover all of these factors.

In the end, 532 flood and nonflood points
were assigned to 12 conditioning factors to
form the data set, divided into two parts: 70%
to train the models and 30% to validate them.

(ii) Construction of deep learning and
machine learning models: in this study, a deep
learning model optimized by three algorithms
(Adam, SGD, and GOA) was built to map
flood susceptibility, and their performance
was compared to that of the XGB model. The
accuracy of DNN-Adam, DNN-SGD, and
DNN-GOA models depends on adjusting
parameters (number of neurons, variable
dimension, hidden layer, population size, and
number of iterations). During the model
training process, the weights of neurons in the
network were computed and adjusted so that
the neural network output matches reality as
closely as possible when input data is
provided. Because the training process was
repeated 500 times, it was necessary to use a
loss function to evaluate the accuracy of the
neural network. The network accuracy was
improved by adjusting the parameters. The
process of changing these parameters took
place in two stages: the first consisted of
modifying the parameters using the trial and
error method, and the second involved using
optimization algorithms Adam, SGD, and
GOA. More precisely, the parameters of DNN
are described as follows.

The DNN model consists of three layers:
an input layer, three hidden layers, and an
output layer. The input Ilayer collects
information from 532 flood and nonflood
points and 12 influencing factors. This
information passes through hidden layers
before reaching the output layer. Each hidden
layer has 11 neurons and a sigmoid activation
function. The Adam, SGD, and GOA
optimization algorithms are used to optimize
the parameters of the DNN model. The
training process is repeated for 500 iterations,
and the batch size is 100. The DNN model is
optimal when the RMSE value is minimal.iii)
Validation of proposed models: in this study,
we used various statistical indices, 1i.e.,
RMSE, MAE, ROC, AUC, and R, utilized by
previous studies to evaluate the accuracy of
proposed models.

(iii) Analysis of flood susceptibility map:
after validating proposed models, they were
used to construct the flood susceptibility map.
Flood susceptibility in the study area was
divided into five classes: very low, low,
moderate, high, and very high, serving as a
basis for sustainable territorial planning.

Deep neural networks

DNNs are algorithms applied in a wide
range of fields. They are considered the
standard in  modeling the nonlinear
relationship between target and explanatory
variables (Nguyen, Nguyen et al., 2022;
Wang, Fang, Hong, & Peng, 2020). The
structure of a DNN consists of input, hidden,
and output layers. Each layer is made up of
neurons that analyze and process information.
The input layer allows the model to receive
information from the input data and pass it to
the subsequent (hidden) layer. The hidden
layer in a DNN can consist of multiple layers,
transforming  complex  features  into
abstractions with a high classification
capability. The output layer results from the
layer classification process described above
(Nguyen, Nguyen, et al., 2022; Pham, Luu,
Van Dao et al., 2021).
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The framework was used to train the neural
network by backpropagating output errors and
optimizing connection weights between classes
to reduce the difference between predicted
results and outcomes; this difference was
evaluated using the cost function (RMSE)
(Ahmed et al., 2022). Adjusting the parameters
of a deep learning model is very important in
determining the accuracy of the model. In this
study, the model parameters were optimized
using three optimization algorithms: Adam,
SGD, and GOA.

Adam

The Adam optimization algorithm is used
to train deep learning models. This algorithm
extends stochastic gradient descent (D. T. Bui
et al., 2020). It uses an adaptive learning rate
for each parameter, adjusting the rate during
learning based on past gradients and partial
derivatives, improving learning convergence.
Adam has several advantages: it can perform
optimizations quickly and efficiently (Nhu,
Hoang, Nguyen, Ngo, Bui, et al., 2020) and
handles sparse gradients well because it uses
adaptive learning rates to adjust updates
accordingly (Vincent, Parthasarathy, &
Jidesh, 2023). In this study, Adam was used to
optimize the DNN algorithm to build the
Mekong Basin flood susceptibility model.

SGD

SGD is the optimization algorithm used to
minimize a function, usually related to
reducing the model error. SGD updates the
model parameters using gradient functions for
each dataset (Nguyen, Van, & Do, 2023). This
algorithm frequently updates parameters based
on single data examples or mini-batches,
making it much faster than gradient descent for
large datasets (Nhu, Hoang, Nguyen, Ngo,
Thanh Bui, et al., 2020). However, due to
frequent parameter updates with noisy data,
SGD exhibits more fluctuations and does not
necessarily converge to the global minimum.
SGD also has the advantage of solving the
local optimization problem because update
noise can help escape shallow local minima.
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Finally, SGD is often used to train neural
networks in high-dimensional spaces (Huang,
Ling, Wu, & Deng, 2022).

G0OA

GOA is one of the most popular
optimization algorithms proposed by (Saremi,
Mirjalili, & Lewis, 2017). GOA is inspired by
the collective behavior of locusts in nature
and uses swarm mechanics to solve complex
problems in the real world. GOA operates in
two main stages: exploration and exploitation
(Q.-T. Bui et al.,, 2020). The exploration
process identifies regions that are likely to
have resources. Each locust is a set of
optimization parameters. Locusts move in
swarms to search for resources and interact
with the environment to adjust their position
toward potential resource regions, while
exploitation allows them to identify resource-
rich regions. Each locust is a potential
solution. Solutions are constantly updated
based on the forces of attraction and
repulsion, allowing the swarm to converge on
the best possible overall solutions (Nguyen,
2022; Nguyen et al., 2022).

XGB

XGB is a popular machine-learning model
that can solve classification and regression
problems. This algorithm uses gradient
enhancement based on sequential ensemble
learning and decision trees (Linh et al., 2022).
XGB takes model errors into account and, to
improve performance, trains a new model that
successfully predicts errors made by the
original model (Aydin & Iban, 2023). This
process is repeated an arbitrary number of
times to improve model accuracy, based on
the principle that the error will continuously
converge to 0 as the process repeats. XGB has
two essential aspects: (i) regularisation is used
in the process of computing similarity scores
to reduce sensitivity for overfitting problems;
(ii) pruning is selected to compare the gains to
avoid the overfitting problem (Abedi,
Costache, Shafizadeh-Moghadam, & Pham,
2022; Ghosh, Saha, & Bera, 2022).
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4. Results
4.1. Flood Conditioning Factor Analysis

The selection of the appropriate flood
conditioning factor plays a vital role in
building flood susceptibility models because
these factors determine the accuracy and
reliability of the prediction models. Poor
selection can lead to inadequate and
inaccurate results, increasing the complexity
of prediction models, which influences the
prediction results (Dodangeh et al., 2020).
Judiciously choosing these factors can
improve the model's prediction ability,
identifying regions where floods are likely to
occur in the study area. This study used
random forest (RF) to select conditioning
factors. RF assigns weights for each factor,
and the higher the weight, the greater the
importance. In the study area, elevation,
LULC, soil type, and rainfall were the most
critical factors determining the probability of
flood occurrence. In fact, in the Mekong
basin, topography greatly, with
mountains upstream and plains downstream.
Mountains have high altitudes, contributing to
rapid runoff downstream during heavy
precipitation. In addition, the plains have very
low altitudes (below sea level) and often lack
drainage, leading to water stagnation during
heavy rainfall. LULC is considered the second
most important driver of the probability of
flood occurrence because land use/land cover
strongly influences floods in the Mekong
watershed. Urban growth the
waterproofing capacity of the soil.

Furthermore, = the  exploitation  of
groundwater resources serves agricultural and
domestic development but leads to subsidence
and increases floods. The soil type was third
in importance in the flood susceptibility
model because it significantly influences its

varies

Increases

infiltration and retention capacity. In the
Mekong watershed, a large part is covered by
clay soils with low infiltration capacity,
possibly increasing runoff volume. The
rainfall was fourth. It should be noted that the
flooding in the Mekong watershed is fluvial,
therefore, rain triggers floods. The Mekong
basin is strongly influenced by Southeast
Asian monsoons, which provide more
redundant precipitation than other regions.
Heavy rainfall in a short time leads to floods.
Ultimately, all factors selected in this study
influence the probability of flooding
occurrence. Therefore, these factors were used
as input data for the deep-learning model.
(Fig. 4).

Elevation
LULC
Soil type |——
Rainfall j—
Slope  ju—
NDVI
Curvature
NDWI
NDBI
Distance to road
Aspect

River density

Figure 4. Flood Conditioning Factor Importance
Analysis

4.2. Evaluating the Performance of the Deep
Learning Model

The validation of the proposed models was
evaluated using ROC and AUC. The AUC
value was used to designate the prediction
capacity considered a validation and
comparison. The hybrid model was more
accurate for the training dataset than the
baseline model (XGB). In particular, DNN-
Adam was more precise than other models
(DNN-SGD, DNN-GOA), with an AUC
value of 0.98, followed by DNN-GOA
(AUC = 0.92), DNN-SGD (AUC = 0.9) and
XGB (AUC = 0.87). The DNN-Adam model
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was more accurate for the validation dataset
than other models (DNN-SGD, DNN-GOA,
and XGB), with an AUC value of 0.98. The
AUC value of DNN-SGD and DNN-GOA
was 0.87, and that of XGB was 0.82. All
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proposed models generally had high
precision, with AUC values above 0.8.
Therefore, these models can construct flood
susceptibility maps in the Mekong Basin

(Fig. 5).
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Figure 5. The prediction capacity of the proposed models (training data set (top) and
validation dataset (bottom))

Figure 6 shows the shape of the hybrid
DNN model after 500 iterations. The DNN-
Adam model had the highest accuracy, with
an RMSE value of around 0.5, dropping
sharply to 0.2 after the first 150 iterations.
From then on, the RMSE value slowly
decreased and stabilized at 0.15 after 500
iterations. Next is the DNN-GOA model; it
starts with an RMSE value of 0.5, which
dropped sharply to 0.35 after the first 50
iterations. After that, the value slowly
decreased and stabilized at 0.35. The DNN-
SGD model had an initial RMSE value of
approximately 0.52, which declined to 0.5
after the first 50 iterations and remained stable
at 0.5 after 500 iterations. The DNN-Adam
model had higher accuracy than others,
demonstrating a more remarkable ability to
predict flood susceptibility. The DNN-GOA
model improved the initial RMSE value, but
there was no further improvement through
subsequent iterations. The DNN-SGD model
performed the worst, with high RMSE values
and no improvement after the first iterations.
The DNN-Adam model had the highest and
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most stable performance, improved over
iterations, and can be used to predict flood
susceptibility. The DNN-GOA model, despite
initial improvements, did not maintain similar
performance. In contrast, the DNN-SGD
model has less flood prediction ability than
other models with high RMSE values.
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0,50 = DNN-SGD
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0 100 200 300 400 500
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Figure 6. RMSE value after 500 iterations

In addition to the AUC and the RMSE
index, this study also used the MAE and the R*
index to evaluate the ability to predict the
probability that a flood occurs in the study area.
The results showed that the DNN-Adam model
had a higher likelihood of occurrence for the
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training data set than other models, with the
MAE value of 0.03 and R? of 0.91. This model
was not only for the training data set but also
for the validation one, with an MAE value of
0.048 and an R® of 0.88. The DNN-GOA
model was second for training and validation
data sets (MAE = 0.26, R* = 0.9, respectively,

MAE = 0.28, R2 = 0.87). The DNN-SGD
model was third for the training and validation
datasets (MAE = 0.49, R? = (.78, respectively
MAE = 0.49, R* = 0.76). The XGB model
performed less in the training and validation
datasets (MAE = 0.5, R* = 0.75, respectively,
MAE = 0.52, R*=0.72) (Table 1).

Table 1. Performance of models using RMSE, MAE, AUC, and R?

Training dataset Validation dataset
RMSE MAE AUC R? RMSE MAE AUC R?
DNN-Adam 0.14 0.03 0.98 0.91 0.16 0.048 0.98 0.88
DNN-SGD 0.49 0.49 0.90 0.78 0.49 0.49 0.87 0.76
DNN-GOA 0.31 0.26 0.92 0.9 0.35 0.28 0.89 0.87
XGB 0.5 0.51 0.87 0.75 0.52 0.52 0.82 0.72

4.3. Flood susceptibility mapping in the

Mekong basin

After validation and comparison of the
proposed models, the DNN-Adam model was
selected to predict flood susceptibility in the
Mekong basin. Figure 7 shows the flood
susceptibility map produced by the DNN-
Adam model. The results showed that
approximately 72,815 km? of the study area is
located in the very low flood susceptibility
zone, distributed in the upper Sesan and Srepok
rivers in the Central Highlands of Vietnam and
the coastal mountains of southwest Cambodia,
90,989 km? in the low probability zone of flood
occurrence, located in the mountainous areas of
Northern and Northeast Cambodia and the
highlands and semi-plains of the lower Sesan
and Srepok rivers of Vietnam, 14,167 km? in
the moderate flood susceptibility
distributed in the lowlands between mountains
or highlands of the plains, high sand dunes
along the coast, 11934 km? in the high flood
susceptibility zone, and 61777 km? in the very
high flood susceptibility zone. The results also
showed that regions with very high flood
susceptibility concentrated in the Mekong
Delta in Vietnam and along the river in
Cambodia.

zone,
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Figure 7. Flood susceptibility mapping produced
by DNN-Adam

5. Discussions

This study used deep learning to assess
flood susceptibility in the Mekong basin.
Previous studies have found that deep learning
solves nonlinear problems that traditional
models cannot solve (D. T. Bui et al., 2020;
Zhao, Pang, Xu, Peng, & Zuo, 2020).
Additionally, these models can analyze
multivariate data by integrating various
sources, e.g., environmental data, hydrology,
climate, and human activities. This allows
susceptibility to be assessed with a better
understanding (Pham et al., 2021). However,
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the overfitting problem is a major one when
using deep learning. In addition, this model
requires quality data. In the case of missing
data, it is challenging to evaluate flood
susceptibility with high precision (Luppichini,
Barsanti, Giannecchini, & Bini, 2022).
Therefore, it is necessary to integrate this
model with optimization algorithms. Among
the proposed models, the DNN-Adam model
had better performance because it is one of the
most popular algorithms for solving local
optimization problems and was found to be
effective in the case of noisy data (Cortifias-
Lorenzo & Pérez-Gonzalez, 2020). Although
Adam is a robust optimization algorithm and
is effective in several previous studies.
However, it should be noted that, unlike SGD,
GOA, which uses a single learning rate for all
parameters, Adam adapts the learning rate for
each parameter individually. This makes the
Adam model often converge faster and
perform better than other models.
Furthermore, Adam wuses momentum,
which helps speed up the optimization
process. Finally, Adam solves the problem of
decreasing learning rates too aggressively by
incorporating momentum and using an
exponentially decaying average of past
gradients, which provides a more balanced
approach  (Cortifias-Lorenzo &  Pérez-
Gonzalez, 2020; Fang, Xu, Li, Yang, & Gong,
2020; Reyad, Sarhan, & Arafa, 2023). The
DNN-GOA model was second in terms of
accuracy. The GOA algorithm presents the
advantage of balancing exploration and
exploitation, reducing the risk of local
optimization situations. In addition, GOA can
converge rapidly. Most importantly, GOA is
robust to data disturbances (Askar et al., 2022;
Nguyen Nguyen et al., 2022). The DNN-SGD
model was less effective than others because
it converged very slowly. Moreover, its
algorithm cannot be easily generalized (Nhu,
Hoang, Nguyen, Ngo, Bui, et al., 2020).
Compared with the flood susceptibility
map produced by deep learning with
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optimization algorithms in this study, the
flood map created by hydrodynamic modeling
and remote sensing in previous studies has
notable differences in terms of the flood area
(Kuenzer et al., 2013; Triet et al., 2020; P.
Van et al, 2012). This study's flood
susceptibility in very high flood susceptibility
areas was more significant than previous
studies. These differences can be explained by
our research using machine learning/deep
learning to construct the flood susceptibility
map, which can identify regions with a high
probability of flooding. In contrast, previous
studies simulated past flood events.
Furthermore, our study aimed to develop a
method using machine learning/deep learning
and open-source data to construct the flood
susceptibility map. Thus, this method could be
applied to different world regions through
open-source and low-cost data. However, the
lack of detailed data, such as dike networks,
influences the accuracy of flood susceptibility
maps.

Although several studies have proven that
the deep learning model is more effective than
traditional machine learning models, there are
still several debates around the extrapolation
problem when using machine learning/deep
learning in natural hazard research (Q.-T. Bui
et al., 2020). Machine learning/deep learning
models can predict natural hazards in general,
floods in particular, climate change, and
changes in socioeconomic  conditions.
Theoretically, this problem can be solved if
we feed the machine learning/deep learning
models with the data necessary for training
the model. However, data collection is also
complex due to the lack of funding, especially
in developing countries like Vietnam. In
addition, other studies have highlighted that
integrating machine learning/deep learning
models with optimization algorithms or
traditional models, such as the hydrodynamic
model, can effectively solve this problem
(Nguyen et al., 2024). However, building this
model requires a lot of time and effort. This
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study successfully built deep learning models
with optimization algorithms and open-source
data in the Mekong Basin. Our study's open-
source models and data make it easy to
replicate in other regions worldwide, such as
the Red River watershed. In addition, the
study area is considered one of the largest
basins in the world and contains many
essential resources and ecosystems. It is
representative of other regions in Asia.

Floods are considered the most dangerous
natural disaster, especially in the relationship
between climate change and human activities.
The sixth IPCC report highlighted the
interactions and systematics related to
different factors such as climate and human
activities. Although the report indicated the
systems, it lacks the approaches and
methodologies to solve this problem. It is
necessary to have models and methods with
high accuracy that have the potential to solve
complex and nonlinear problems (Hochrainer-
Stigler et al., 2024) to reduce the effects of
this natural disaster. In this study, we justified
the development and application of machine
learning to build the susceptibility map, which
is the key to supporting decision-makers in
creating the appropriate strategy and land use
planning. Several studies have highlighted
that effective flood risk management requires
integrating land wuse planning into risk
management strategies. Deforestation is a
prime example of land use exacerbating
flooding, with deforested areas considered the
most vulnerable because proper planning can
reduce the negative impacts of floods.

In contrast, poor planning can worsen
flood risks. Planning policies are essential, but
their enforcement requires strict regulations.
In many countries worldwide, especially
developing countries, planning for urban and
industrial areas in flood-prone areas has
ignored planning regulations (Nguyen, Dang,
Nguyen, Bui, & Petrisor, 2022). The result is
increased community exposure, leading to
unsustainable development. Furthermore, in

the context of climate change, which causes
adverse impacts on people, planning becomes
even more critical, and it needs to address its
effects on the economy and society, especially
in the Mekong Delta region, which is heavily
affected by climate change. Therefore,
planning needs to be sustainable and have a
long-term vision to minimize the impact of
floods, so limiting the planning of residential
areas in areas prone to flooding is necessary.

Although this study successfully assessed
flood susceptibility in the Mekong Basin, it
also pre-assents general data limitations. First,
flood points were collected from previous
studies and Sentinel 1A images. However, the
lack of data measured on the ground can
influence the accuracy of the models.
Furthermore, the selection of nonflooding
points was based mainly on altitudes and
slopes. Incorrect data selection also affects the
predictive ability of proposed models.
However, currently, there are no universal
guidelines for data selection. Ultimately,
floods in the study area were strongly
influenced by climate change and dam
construction upstream, so it is necessary to
integrate  these  changes into  future
assessments of floods. Currently, flooding is
influenced by climate change and wurban
growth, so evaluating this change in flooding
is essential to support decision-makers in
proposing effective strategies.

In future research, we will try to evaluate
this change in flooding. Moreover, the
extrapolation problem is considered one of the
significant problems when using machine
learning to solve environmental issues, for
example, flooding because this model is the
drive-model, so the statistical relationship
between the flood locations in the past and the
flood causes is significant to predict the flood
in the future. The diversity of data in different
places and cases plays an essential role in
predicting the flood in various regions. In the
future, we will try to collect data at other
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locations to solve this problem. Moreover,
integration between individual models and
optimization algorithms is a feasible solution
to this problem. In general, the results of our
study could be beneficial in water resource
management strategies aimed at reducing
flood damage and developing agriculture to
combat climate change and drought. This goal
could be achieved by declaring areas where
new constructions are prohibited, significantly
reducing damage to property and humans.
Additionally,  destabilizing  the  flood
susceptibility zone can help restore its
ecosystems.

6. Conclusions

This study proposes a framework for
building flood susceptibility maps using deep
learning and optimization algorithms with
open-source data in the Mekong basin, which
can be replicated in other regions worldwide.
The results significantly support decision-
makers or planners in proposing appropriate
sustainable land-use planning strategies. The
results indicate the following:

(i) Building a framework for flood
susceptibility mapping in the Mekong River
Basin highlighted the importance of machine
learning and remote sensing in assessing flood
susceptibility. This highlights that open-
source data and machine learning algorithms
can significantly contribute to building flood
susceptibility models in other world regions.

(i1) Deep learning is a powerful method for
building flood susceptibility maps. Among the
proposed models, the DNN-Adam model had
the best performance, with an AUC value of
0.98, followed by DNN-GOA, with an AUC
value of 0.89, DNN-SGD, with an AUC value
of 0.87, and XGB, with the AUC value of
0.82.

(i) Approximately 72,815 km? of the
study area is located in the very low flood
susceptibility zone, 90,989 km? in the low
probability zone of flood occurrence,
14,167 km? in the moderate flood
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susceptibility zone, 11934 km? in the high
flood susceptibility zone and 61777 km? in the
very high flood susceptibility zone.

Flood management strategies are essential
for the Mekong basin, especially regarding
climate change, because floods positively and
negatively influence human life, society, and
the economy in this region. This study applied
open-source machine learning/deep learning
and remote sensing data to construct a flood
susceptibility map of the Mekong basin,
which is very necessary and can support

decision-makers or planners to propose
appropriate  strategies  for  sustainable
territorial  development, including the

reduction of negative impacts on human life,
society, economy, and a balanced distribution
of surface water resources through floods to
mitigate climate change effects.
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