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ABSTRACT

Debris flow inventory is an essential task for scientists and managers to mitigate danger to humans, especially in
mountainous areas. However, rapid land use and cover change, as well as technological limitations, make it a
challenging task. Monitoring debris-flow efforts, especially in hilly places with limited transportation and technology,
may improve management to minimize damage caused by this hazard. This work assesses U-shaped deep learning
architectures, focusing on the roles of image size, optimization procedures, and data quality in debris flow trace
identification using U-Net and U2-Net. While new debris flows can be detected through machine learning modeling,
the U-Net model, combined with the Adam optimizer and an input size of 64x64, has been proven to be efficient,
accurate, and stable. Small debris traces that can be used for planning debris thickness maps were easily identified in
Worldview-2 and UAV images but not in the medium-resolution remote sensing data. When applied to Bat Xat
district, Vietnam, the models identified that the distribution of debris flows is not uniform and depends on natural
factors, such as rainfall and human-interpolated factors, including the construction of structures. The study also
establishes the need to continually assess and incorporate big data for enhanced debris flow hazard assessment and
mitigation. Further developments should focus on the effective use of multi-spectral and large-scale topographic data
to strengthen disaster risk identification and provide recommendations for disaster risk reduction.
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1. Introduction the WHO, landslides and debris flows killed
18,000 and injured 4.8 million between 1998
and 2017 (Carrion-Mero et al., 2021).
Understanding how frequently and where
debris flows occur can reduce the damage
caused by this hazard to humans and the
environment (Borrelli et al., 2014). However,
global debris-flow monitoring requires
extensive data collection and the selection of
suitable indicators. Several approaches are
employed to investigate the consequences of
*Corresponding author, Email: nguyenhieu@hus.edu.vn debris flow (Ren, 2015). Tectonic plates,

The global loss of life, property, and
environment due to the impacts of debris
flows has increased in recent years (Kean et
al., 2013; Iverson et al., 2015). Cutting down
trees, developing towns, severe rain,
earthquakes, and volcanic eruptions transport
soil, rock, and rubbish swiftly on hill slopes
(Sanchez-Nuifiez et al., 2015). According to
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GPS, and inclinometers can detect and record
debris flows in real-time, but only at a small
scale in a particular location (Jason W.
Satellite and aerial photos may reveal debris
flow-prone regions changing in a larger scale
(Kean et al., 2013; Su et al., 2024). These
monitoring networks enable the government
and experts to assess debris flow risk and alert
the public immediately.

Commonly, field survey teams gather
debris flow tracks, geography, and hazard
monitoring along roads and residentials
(Jiang et al.,, 2024). These ground-based
investigations can reveal the size, speed, and
initiation methods of debris flows, thereby
improving remote sensing samples (H. Yang
et al., 2024; Kuschel et al., 2024). Groups and
professionals receive global debris flow data
to identify patterns, trends, and causes of
debris flow. Policymakers, managers, and first
responders utilize these statistics to strengthen
communities and reduce debris flow risk.
Although monitoring and research have
increased, the global numbers of debris flows
remain challenging to inventory due to
underreporting, errors, and usability issues
following the rainy season (J. Zhang et al.,
2024; Zhou et al., 2025). Therefore, scientists,
managers, and international entities require an
additional method to monitor and exchange
debris flows.

There are various visual and analytical
methods for detecting the shapes of debris
flow traces in remote sensing images (S. Yang
et al.,, 2024). They can be scars or shifting
topography, distinctive morphological
characteristics such as head scarps and debris
fields, and altered plant patterns that can
indicate the appearance of debris flow (Keller
et al., 2015; Sanchez-Nunez et al., 2015).
Casagli et al. (2023) suggested examining
tone, texture, shadows, and lighting to identify
debris flow sites. Images taken at various
dates can be compared for temporal analysis
to learn how landscapes change over time and
identify rapid changes or movements

associated with debris flows. These
indications, combined with sophisticated
image processing, help researchers discover
and interpret debris flow paths in remote-
sensing images. It lets individuals monitor
debris flows and assess their risk (Varma
Byrraju, 2019). Therefore, scientists and
managers need a comprehensive indicator
system that can discover collapse traces in
field and satellite data.

Due to the constant change and complex
shape of debris flows, selecting a suitable
technology to identify, map, and characterize
them is a challenging task (Pierson, 2005; Lee
et al., 2024). Deep learning is one of the most
developed technologies today in automatic
object identification, serving the interests of
protecting resources and the environment
(Tran Anh et al., 2024; Nguyen Cong et al.,
2024; Yasir et al., 2024b, 2024a; Nguyen et
al., 2025; Nguyen Thanh et al., 2025).
Recently, This technology can rapidly and
reliably analyze collapse traces (Jiang et al.,
2024; S. Yang et al.,, 2024). For example,
CNNs and U-shaped structures automatically
classify and detect debris flows in satellite
images (Dang et al., 2022, 2024a). CNNs
employ massive quantities of labeled data to
identify complicated debris flow patterns and
linkages and distinguish debris flows from
other shapes and forms (Ghorbanzadeh et al.,
2022). Previous studies employed Sentinel-1
and Sentinel-2 data to identify landslides
using neural network models (Dang et al.,
2024c). Deep learning algorithms aggregate
data, extract characteristics, and simulate
debris  flows regionally.  Additionally,
computer scientists, geoscientists, and remote
sensing experts must collaborate to improve
algorithms, techniques, and technologies for
utilizing remote sensing data in debris flow
knowledge (Zhang et al., 2023; L. Zhang et
al., 2024; Li et al., 2024). Thus, the potential
of deep learning for debris flow trace
detection enables the discovery and mitigation
of dangers in rapidly changing environments
today.
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The study aims to propose a
comprehensive indicator system and deep
learning (DL) models for locating debris flow
traces in WorldView-2 satellite images.
Section 2.1.1 describes how the indicator
system uses extremely high-resolution remote
sensing and field observations. Section 2.2
discusses using DL models with various
features in WorldView-2 images to locate
debris flows. After that, our final DL models
and signaling system are extensively tested
throughout a particular region in the northern
part of Vietnam. By employing multi-sensor
remote sensing data to locate debris flows,
this research demonstrates their practicality in
real-world applications.

2. Material and methods
2.1. Debris flow detection deep-learning worktlow

Figure 1 illustrates three ways to identify a

debris flow trace. The extensive assessment in
Section 2.1.1 identified debris flow indicators.
On-site and lab tests were done. Debris flow
trace samples were made at ground truth
points (GTP) and from multi-temporal
Worldview-2 images. Section 2.1.2 explains
two types of U-shaped models from different
sources. Deep learning methods, utilizing both
conventional and cutting-edge architectures,
teach computers to recognize debris flow
traces on varied inputs in the second stage.
Training models were rigorously evaluated in
the third step. The models were tested using
Worldview-2 images to prevent overfitting
and underfitting. Phase 2 was developed and
extensively tested based on new data to assess
the model's performance and its potential in
real-world applications. Lastly, researchers
developed regional debris flow trace maps in
particular regions.

‘ Review of Debris-flow Research | —{

Correcting
Worldview-2 images +  geometricissues
(103 image dates) and filtering noise

‘ Collect multi-temporal

Collect new Worldview-2
images (since 2014)
In Bat Xat district,
Lao Cai province

Testing and eliminating
overfitted models

"

¥

Indicators on fields and very high-resolution
remote sensing images

Sampling

Generate Training Data
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T |: References
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Figure 1. Deep-learning model construction procedure for debris-flow trace detection

2.1.1. Remote sensing and field debris flow
indicators

Land-use planners and regulators need
detailed inventories of debris flows, including
topography, velocities, magnitudes, and

292

substrates, to understand and develop suitable

plans for minimizing their impacts (Yousefi et
al., 2025). Nowadays, debris flow-prone
locations can be identified and assessed using

satellite and field images aided by trace
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indicators (J. Zhang et al., 2024). Some
indicators on fields include tension fractures,
topography, plant patterns, and disturbed soil
and rock (Fig. 2). These field indicators can
reflect debris flow movements over time.
Meanwhile,  satellite  images  provide
information on land cover, the spectral
reflectance of different objects, and changes
of terrain. Based on the very high resolution
of some satellite sensors, optical images can
monitor vegetation health and terrain changes.

Dao et al. (2008) clarified that debris flow
is one of three particularly dangerous gravity
landslides. This type of movement is also a
form of landslide movement, characterized by

O O ~NOOU A WN =

a slide flow, where rainwater and groundwater
play a direct and prominent role. Due to the
thick, clay-rich weathering crust, the loose
sediment layer on the surface is soaked with
water when it rains for a long time. Debris
flow behaves like a viscous mixture of rock
and mud and then operates according to the
sliding mechanism. Therefore, the destructive
force is large, often causing fatal disasters.
The indicators from field observations and
satellite data, such as Worldview-2, shown in
Fig. 2, enable the detection of debris flow
traces and the identification of vulnerable
areas for safety through monitoring, early
detection, and informed decision-making.

Indicator Field RS Image
Summit Crown X X
Scarp X
Surrounding Flank X X
Slide Surface X
Main Body X X
Tension Cracks X
Concealed Surface X X
Overlying Foot X X
Downward Toe X X

Figure 2. Field and Worldview2-based debris flow indicators

Figure 2 shows comprehensive debris flow
details from field and satellite images.
Understanding debris flow dynamics requires
knowledge related to the subject. Gallo and
Lavé (2014) and Dang et al. (2024b) call the
hill's leading edge the "Scarp" due to its high
debris flow slope. The "Summit Crown" will
remain until the next flow. Satellite and field
images showed untouched debris on the
"Surrounding Flank" of the flow. The "Slide
Surface" is where material flows under the
earth, and the "Main Body" is the debris block
flow above the rupture surface. Field stress
cracks indicate core ripping and fractures.
Debris can be revealed on the "Concealed
Surface," where green and grey surfaces meet.

Additionally, the "Overlying Foot" and
"Downward Toe" parts cover the pre-debris
flow area and migrate downhill. Detailed
debris flow indicators enhance our ability to
monitor and assess geological phenomena, as
well as identify debris flow traces in field
observations and remote sensing data.

2.1.2. Data sampling

Samples were collected based on debris
flow traces in Vietnam (Yellow regions in
Fig. 3). Vietnam experienced 450 landslides,
debris flows, and flash floods between 1953
and 2016 (Hung et al., 2015; Meinhardt et al.,
2015). This statistic is questionable since not
all debris flows were recorded. Based on
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medium-resolution satellite images, scientists
identified debris flows better. However, Dang
et al. (2024a) proved that the use of this data
can make small events disappear, leaving only
big ones to be discovered. Accordingly,
mountainous  authorities  systematically
documented 8,500 locations of debris flows.
In 5,000 locations, Pham et al. (2023)
identified 61% of Northwestern landforms as
debris flow-prone. These debris flows occur
in complex, deeply cut mountainous terrain
with abundant erosion and geological
fragmentation. More than 2,700 small-scale

debris flows have volumes higher than
100,000 m® (Vu and Nguyen, 2023). Based on
these records, the authors arranged three field
trips in six northeastern Vietnamese provinces
between 2021 and 2023 to find debris flow
traces. From July to September, debris flows
damage provincial, district, community, and
village roadways in these provinces. The
recent increase in this hazard type has caused
significant damage to roads, stations,
electrical grids, hydrological systems, and
water drainage networks, substantially halting
traffic (Thao and Huong, 2022).
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Figure 3. Field and remote debris flow trace sampling locations

Initial preparation collected the input
sample in three steps. 0.7 m-resolution Google
Earth Pro worldview-2 images vary in
brightness. Therefore, a computer requires
numerous data samples to classify debris
flows. Google Earth Pro's samples in various
years were maximized by saving photos as
5000 x 2500 *.JPG. The proper scale was
1:500. The application saved RGB pictures
without background information. In six
central Vietnamese provinces, including Yen
Bai, Dien Bien, Lao Cai, Son La, Lai Chau,
and Hoa Binh, multi-temporal samples were
chosen. The use of images from different
periods (2010-2023) introduces variability in
lighting, vegetation phenology, and land-use
change, thereby influencing the consistency of
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the debris flow training data. Attempts to
address this included standardizing spatial
resolution and image size as well as cross-
referencing with field data to validate features
across time. Debris flows have been observed
in the selected areas for a decade (Fig. 2).
Cross-referencing events with the remote
sensing database found Worldview-2 images
from 2014 to 2023. Accordingly, 2433 debris
flows were digitalized from 103 image dates.
Sampling spans 1,400 km? to collect debris
flows of various sizes.

Step 2 was processed with all photo frames
obtained from GEP software. Combining
photos from the same year and area created
full images (Fig. 3) to digitize traces of old
debris flows. The high-resolution images of
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GEP software contained spatial distortions;
therefore, roads and other civil engineering
works were used to correct them
geometrically. This study altered geometrical
aspects using ArcGIS Street-view data.
Google Earth Pro three-dimensional models
were utilized to analyze debris flow landforms
visible from planted woodlands, and the
border was manually digitized as a mask
dataset in the second step.

High-resolution images show debris flows
from peaks to debris flow toes. However,
authors often struggle to identify debris flows
in annual agricultural zones. Acacia and
Eucalyptus dominate local reforestation.
Acacia and Eucalyptus are harvested every
5-10 years in contemporary afforestation

(Megown et al., 1999; Brockerhoff et al.,
2013). After three to five years, farmers harvest
Acacia and Eucalyptus. Agricultural planting
or renewing changes land covers. Greenery
became bare when plantation trees were taken
dump timber from high

down. Farmers

T

Google Earth

altitudes onto open land for river transport.
Harvesting activities created a debris flow-like
topography at the forestry site (D'Amato et al.,
2017). Land covers after deforestation mirror
debris flow shapes (Fig. 4). Downstream
accumulation sites may not follow the cut
plantation wood boundary. Plantation forests
change bare soil into young tree density in 2—3
years (Pham et al., 2024). False positives arise
from these variations in forest cover that
simulate debris flow forms. The study
separated debris flow signatures from post-
harvest plantation disturbances using extra
land-use maps, vegetation indices (e.g., NDVI
and BSI calculated from Sentinel-2 images),
and deep learning model filtering rules to help
mitigate this. New plantations and water flow
zones may hide debris flow traces and slid
vegetation. New growth may conceal these
features, limiting the formation of new debris
flows. Satellite image digitization of debris
flow samples requires field changes for
accuracy

Figure 4. Traces of land use/cover changes look like a debris flow
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On the field, the authors measured the size
of debris flows and observed new traces.
During three field excursions in Northwestern
Vietnam from 2021 to 2024, the author
verified and tested the application of debris
flow indicators. Three fieldwork excursions
were used to (1) find debris flow portions and
compare them to Google Earth visual image
interpretations, (2) measure and compute area
and diameter, and (3) analyze land use/cover
changes for digitization. After that, GGE
images and mask data were made with "0"

A Sample .
on Worldview-2 image

surrounding areas and "1" debris flow areas
(Fig. 5). Worldview-2 data was "input
images," whereas interpreted data was "input
masks" in deep learning. Finally, large images
were cut into sub-images. Six thousand eight
hundred four sub-images were obtained if the
input size was chosen as 256x256x3; 11,171
sub-images were obtained if the input size
was selected as 128x128x3; and 15,234 sub-
images were obtained if the input size was
chosen as 64x64x3.

Digitized Mask

Figure 5. Cutting step to provide debris flow trace sample for DL model development

2.2, Selecting suitable deep-learning model
architectures

2.2.1. Deep-learning architecture parts

Several new architectures, such as CNN,
BiSeNet, and Dexinet, have been utilized to
construct deep learning models. Some of the
main parts that make up the structure of these
architectures include input, convolution,
Batch Normalization, Pooling, Concatenation,
and Dropout layers (Sivapriya and Suresh,
2023; Tram et al., 2024). The training model
evaluates all INPUT sub-images raw pixels
before encoding. After processing, CONV
filters may alter the input, and normalizing
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batches change data scales (Dong et al.,
2022). The "Batch Normalization" layer
reduces training "internal covariate shift" and
loss of information in the training process
(Wen et al., 2023). This layer modifies the
standard deviation of the input layer through
the following formula:

yi=ax + f Q)
The parameters o and P are modified
during  training, = whereas  mini-batch

B({x;...x,}) mean and variance formulas
determine ;. POOL layers using activation
techniques change the data to a 2x2 spatial
matrix.
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8p « 22l @)
03 = -3 (vi — 8p)? 3)
Al - bi— UB (4)
0%+ ¢
In the decoding process, "ConvTrans"

layers are commonly used for upsampling
matrices. Instead of training redundant
neurons, DROPOUT layers locate and disable
them (Diakogiannis et al., 2020). It prevents
under- or over-fitting and generalization.
Throughout the training, all deep learning
models had layer input dropouts around 1.0.
The number of above layers can be changed
depending on the architecture of deep learning
models. The allocation of each layer in the
architecture also affects the model performance
(Huang et al, 2020; Dong et al., 2022).
Therefore, various state-of-art architectures
have been developed and tested for different
purposes. In this study, the authors selected
two U-shaped architectures to optimize based
on changes in the number and location of the
above layers for detecting debris flow traces on
high-resolution satellite images.

256

[

512

Y512

2.2.2. U-Net

Models based on the U-Net architecture
(Fig. 6) have been used to analyze coastline
changes (Giang et al., 2023) and land-use
changes (Stoian et al., 2019). Its U-shaped
design mimics the "U" and "U-Net"
architectures, which include an encoder,
bottleneck, decoder, Skip Connection, and
output layers (Nava et al., 2022; Dang et al.,
2024c). The U-shaped top plays a role in
encoding or contracting data. Input image
context and debris flow characteristics are
extracted at the beginning. Pooling and
convolutional layers lower input spatial
dimensions and improve feature channels. In
contracting, 3%3 convolutional layers filtered
the data into multi-dimensional data layers. A
bottleneck layer collects and stores the most
abstract and crucial Worldview-2 image
elements; such debris flow traces are at the
bottom of the U-shaped structure (Stoian et
al., 2019). This layer preserves geographic
information while reducing the dimensionality
of representation.

Down-sampling
Up-sampling

Conventional
skip connection

Supervision by
v ground truth

Figure 6. Debris-flow detection U-Net architecture using Worldview-2

After learning all the rules, the encoded
data is enlarged. This novel filter count
adjustment provides critical context and

information  for  debris flow traces.
Deconvolution or transposed convolutional
layers enhance spatial resolution while
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reducing the number of channels and
modulating the number of filters from 64 to
1024 in the contracting route to restore the

original information of data. Skipping
connections  preserve fine-grained and
geographical features during upsampling

(Boehm et al., n.d.). Afterwards, encoder-
decoder data exchange is simplified. A 1x1
convolutional layer in the U-Net's final layer
translates learned features to output channels.
Results channels reflect the likelihood of
debris flow or non-debris flow.

2.2.3. U2-Net

U2-Net design is developed based on
U2-Net, a two-level U-structure architecture,
to delve deeper, acquire high resolution, and
reduce memory and processing costs (Qin et
al., 2020). A single- or multi-level nested
U-structure may have any positive integer
exponent to make the network deeper. Instead

of cascading stacking, the exponential
notation of two implies a U-structure in each
layer of a typical U-Net. Architectures with
high levels are complicated to build and
deploy. Limiting "n" exponential notation to
two simplifies the concept (Fig. 7) (Dang et
al., 2024c). U-Net stages include Residual
U-blocks (Pouliot et al., 2019). A novel
bottom ReSidual U-block harvests intra-stage
multiple-scale features without reducing
feature map resolution (Diakogiannis et al.,
2020). The proposed U2-Net model encodes
data at multiple scales with less processing
and memory requirements than U-Net3+, as
tested by Dang et al. (2024c). Accordingly,
this architecture is simple enough to detect
objects like debris This
architecture utilizes leftover U-Net
components to operate in various scenarios

flow traces.

with minimal performance loss.

_ Y
|
Bocidialii-flaek
| Residual U-block

Encode 1

Encode 2

A ;
w Concatenation

Sup

Encode 6

Supervision by ground truth

_. Down-sampling | Up-sampling

................................................................................................

Conventional
-

e o @8 Dacode 3
4
»$# Decode 4

Sup 5

Sup 4

Sup 6

Conv + Sigmoid

skip connection Up-sample to input size

Figure 7. Debris-flow detection U2-Net architecture using Worldview-2

The architecture of the U2-Net used in this
study contains six encoders, five decoders,
and one fusion module before coming to the
outcome layer. The first four encoder stages
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downsample input. To preserve context, the
fifth and sixth encoder stages utilize dilated
convolution to match the pixel resolution to
the data. The decoder and encoder phases
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match in the sixth encoder. Concatenating
unsampled feature maps from the previous
level and an asymmetrical encoder stage link
to a responding decoder stage. The fusion
module builds debris flow probability maps in
the outcome layer. The U2-Net outputs six
side debris flow probability maps using a
sigmoid function and 33 Conv layers blended
in stages En(6), De(5), De(4), De(3), De(2),
and De(1). Concatenation, 1x1 convolution,
and sigmoid function generate the final debris
flow probability map in the last layers.

2.3. Optimization methods

Final deep learning models to predict
debris flows must be developed without
overfitting or underfitting. To verify the
debris flow outcomes in the training and
validation dataset, total accuracy (ACC) and
loss function values were used.

2.3.1. Model evaluation techniques

Trained models are evaluated using six

"recall,” "f1", and "loss function". First,
accuracy is defined as the ratio of accurate
predictions to the data samples utilized in the
assessment (Liu et al., 2019). When data
classes are expected to have equal sample
sizes, this technique is used. In this study,
50% of samples were taken in identified
debris flow traces, and 50% of samples were
taken in the non-debris-flow areas. All input
data were separated into training (70%) and
validation (30%) sets. All evaluation indices
were recorded during both the training and
validation processes. Where "n" is the total
number of sub-images; P is the predicted
outcomes, and G is the ground truth samples;
P; is the predicted label for the i™ sub-image,
and Q; is the ground truth (actual) label for the
i™ sub-image; 1(P; = Q) is an indicator
function that returns: 1 if P=G; (correct
prediction) and zero if P#G; (incorrect
prediction).

Firstly, the accuracy value is calculated as
follows:

indices: "accuracy," '"dice," "precision,"
Number of true predictions 1@n
Accuracy = = =) . 1(P;, = Q; 5
y Total number of input samples nzl—1 ( t QL) ( )
Second, Di ffici ilized ; 2 +|PNG]
econd, Dice coetticients are utilized to Dice = ~———=— (6)
|PI+]G]

compare predicted and actual outcomes (Seale
et al, 2022). The metric compares the
intersection area of projected and actual
outcomes to their total. A Dice score of
around 1 indicates that the model correctly
separated the data, as the expected and actual
outcomes matched. The dice value formula is
as follows:

Number of true positive predictions

Thirdly, precision measures a model's
ability to predict both positive and negative
outcomes accurately. The statistic assesses the
ratio of correctly anticipated negative to
positive events. Due to its precision, the
model seldom mis-predicts negative scenarios
as positive. The calculation formula for
precision value is presented as follows:

S 1(Pi=1AG;=1)

Precision =

Number of positive predictions

The fourth metric of a model's
performance to estimate all dataset positives is
"recall" (Abdallah et al., 2020). The statistic
measures the ratio of correct optimistic
predictions to the total number of positive

Number of true positive predictions _ ?=1 1(Pi=1AG;=1)

T XL eED 0
cases in the dataset. A high recall suggests
that the model can identify positive instances
but may mispredict negative ones. Recall

value formula is presented as follows:

Recall =

Total number of positive samples

®)

Zln=1 1(Gi=1)
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As the fifth metric, the F1 Score assesses a
deep learning model's performance in
identifying all optimistic predictions while
reducing false positives simultaneously (Ju et
al., 2022). Therefore, this metric uses the
harmonic average of Precision and Recall

based on the following formula:
2 * (Precision * Recall)

F1 score = — ©)
Precision + Recall

Lastly, weight, image size, and label
changes may cause a loss of data information
during up- and down-sampling when
calculating the F1 score. Models reduced loss
function (£) to reduce input data loss (Dang et
al., 2020). Weight optimization lowers
information loss and improves debris flow
forecasts. Average loss for all training sub-
image datasets:

L=—3n, O (10)
"n" represents training data, whereas £()
Shows loss for "i" trained sub-image. All deep
learning models used TensorFlow Keras API
for training, validating, and testing (Studer
and Falbel, 2019). Testing and validating
accuracy were verified throughout the training
process. Coefficient convergence halted deep
learning training after 50 epochs.

2.3.2. Model precision optimization

Various deep-learning methodologies have

been employed to enhance U-shaped models,
such as modifications to the architecture,
training size, and optimization algorithms.
This section examines all possibilities to
improve the accuracy of trained U-shaped
models. Firstly, the input samples were
configured with training sizes of 64x64,
128x128, and 256x256. Secondly, the number
of filters in the Conv layers was changed from
8, 16, and 32 to 64. These changes can modify
the size and characteristics of input training
samples before the computer can learn.

Additionally, using the optimal
optimization process is the most expedient
approach to identifying a model that achieves
superior accuracy and minimal loss function
(Nhu et al., 2020). This study used the Adam,
Adagrad, Adadelta, and SGD optimizers to
identify the optimal weights for trained
models (Table 1). During the optimization
cycles, the evaluation functions of the trained
models, as mentioned in Section 2.3.1, were
computed continually. Following each epoch,
the weights of all trained U-Net models were
adjusted to reduce weight loss for the
subsequent  evaluation. = This  graphic
encapsulates the previously examined
optimization strategies. The training size and
quantity of filters varied according to the
optimizer method.

Table 1. The chosen methods to optimize parameter weights in trained U-shaped models to detect debris
flow traces, adapted from Gulli and Pal (2017); Iglovikov et al. (2017); Wang et al. (2017); Alom et al.,

(2019); Falbel et al. (2019)

Formula Model name Optimizer Algorithms
2 U-shaped-Adam Adam Weyy = W, — ﬁfﬁs
3 U-shaped-Adagrad Adagrad W1 = Ws — ﬁgs
4 U-shaped-Adadelta Adadelta Aw = — % Js ; Wsy1 = Ws + Awg
U-shaped-SGD SGD Wep1 = Ws — 1.V, Q(Ws;x(i);y(i))

first and second moments; 1) — step size

where w is parameter weight; 9 is the learning rates; t is step number; € = 10°%; g, is the gradient; m, v are values of]
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2.4.  Advanced  Debris
Interpretation

Flow  Trace

After selecting the most optimal model, it
was used to examine debris-flow traces in
new Worldview-2 images from 2010 to 2023
in Bat Xat district, Lao Cai
Vietnam. Combining 1,542 small images
obtained from the Google Earth Pro software
yielded four large ones. This novel prediction
algorithm requires no data preprocessing. The
trained model converts image input into three-
dimensional matrices. These data contain
different sizes of the identified debris-flow
traces. Fully Connected (FC) achieves slope
avalanche limitations for detecting debris
flows. The interpreted outcomes were
compared to August 2023 and March 2024
field trips in ground control sites. Section 4
discusses how  difficult debris flow
classification is and how our findings compare
to others.

3. Results

province,

3.1. Performance analysis

Table 2 presents an overview of debris-
flow detection models assessed via diverse
setups and performance indicators. The design
of the backbone and the quality of the data
substantially affect the performance of the
models. The computing configuration used for
training significantly influenced modeling
duration and file size. All nine models were
trained on an HP Z800 workstation, equipped
with a 12" Gen Intel(R) Core(TM)
i7-12700KF CPU (3.60 GHz), 32 GB of
RAM, and an NVIDIA GeForce RTX 3070
GPU. The simplified setups included two
U-Net models, which required just one hour
of training and yielded reduced file sizes of
approximately 30 MB. Only training and
validation datasets were used to calculate
performance indicators. The stated high

accuracy and low loss values imply strong
performance; however, the optimum debris
flow trace identification model must be
established using independent testing datasets
to prevent overfitting.

Although U2-Net may not always achieve
the best accuracy or lowest loss, different
versions of the network, such as models 13
and 21, are more successful than U-Net in
terms of Dice and Recall, especially in
identifying debris flows over a wide area. It
appears that U-Net models perform well in
marking out neat and concentrated traces,
whereas U2-Net is better for detecting general
regions of diffuse debris flows. For this
reason, the outcome will determine which
network is preferable: if accurate detection is
key, U-Net is better, but U2-Net can provide
broader coverage.

The training and evaluation procedures for
the leading models disclose intriguing
patterns. U-Net models have been regularly
shown to enhance accuracy and stability
across many setups. The U-Net model, with
an input size of 64x64, achieved a peak
accuracy of approximately 92.4% and
demonstrated consistent validation loss
metrics. Although the trained U-Net model
with a 256x256 input size reached the highest
accuracy (~96.6%) with a stable converging
trend, the dice, precision, and F1 values of
this model are lower than 75%. Meanwhile,
the U-Net models using 64x64 input size
remain these values higher than 83%.

In comparison, U2-Net models had more
performance variability (Fig. 8). The 64x64
U2-Net model achieves an accuracy of 87.7%
but exhibits varying Dice coefficients.
Extended training periods and loss values
showed that U2-Net models were more
susceptible to optimization strategies because
of their high processing needs.
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Table 2. Performance Analysis of 24 Deep Learning Models for Debris Flow Detection
No. In.put Architecture | Optimizer .L.oss functl?n . Accu- Dice Precisio Recall | F1
size Training | Validating | racy n
1 64 U-Net Adam 0.23 0.17 924 | 83.7 | 858 86.3 86.1
2 64 U-Net Adagrad 0.21 0.19 923 | 834 | 858 859 | 859
3 64 U-Net Adadelta 0.32 0.18 924 | 839 | 853 87.1 86.2
4 64 U-Net SGD 0.25 0.22 924 | 83.1 86.4 85.5 85.9
5 64 U2-Net Adam 0.23 0.18 923 | 83.6 | 854 86.6 | 86.1
6 64 U2-Net Adagrad 0.36 0.31 84.6 | 548 | 744 66.6 | 70.3
7 64 U2-Net Adadelta 0.28 0.27 876 | 713 | 771 773 | 772
8 64 U2-Net SGD 0.25 0.27 877 | 713 | 779 764 | 77.2
9 128 U-Net Adam 0.13 0.12 945 | 764 | 79.1 80.1 79.5
10 128 U-Net Adagrad 0.13 0.13 945 | 75.8 | 80.1 78.5 | 793
11 128 U-Net Adadelta 0.14 0.13 939 | 747 | 79.8 792 | 79.7
12 128 U-Net SGD 0.17 0.15 926 | 72.6 | 75.1 769 | 77.2
13 128 U2-Net Adam 0.12 0.12 946 | 77.1 | 79.7 80.2 | 79.9
14 128 U2-Net Adagrad 0.17 0.16 92.7 | 582 | 755 67.1 71.1
15 128 U2-Net Adadelta 0.27 0.23 89.8 | 434 | 67.1 47.3 55.4
16 128 U2-Net SGD 0.27 0.23 89.6 | 455 | 67.8 41.8 | 523
17 256 U-Net Adam 0.02 0.01 96.6 | 66.6 | 78.5 727 | 752
18 256 U-Net Adagrad 0.09 0.08 96.6 | 66.8 | 79.3 725 | 755
19 256 U-Net Adadelta 0.08 0.05 95.8 | 646 | 774 71.6 | 732
20 256 U-Net SGD 0.07 0.04 945 | 653 | 769 714 | 71.5
21 256 U2-Net Adam 0.11 0.09 92.7 | 68.6 | 753 713 | 72.8
22 256 U2-Net Adagrad 0.13 0.10 864 | 644 | 72.6 69.6 | 70.6
23 256 U2-Net Adadelta 0.21 0.18 83.8 | 659 | 735 703 | 75.6
24 256 U2-Net SGD 0.16 0.13 819 | 675 | 76.8 684 | 714
(64x64) UNet-Adam (64x64) U2Net-Adam (64x64) UNet-Adadelta
06 16
10 14
05 o8 12
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Figure 8. The performance of the model-development process of the best six deep-learning models for
debris flow extraction is based on very high-resolution images
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The model's actions are often determined a
lot by the selected optimizer. Many networks
that work well and converge quickly are
created by adding adaptive rates and
momentum to the Adam optimizer. Since it
controls the learning rate, Adagrad functions
effectively on sparse data; however, over
time, this rate vanishes, and performance
suffers. To address this, Adadelta adjusts the
gradient development and allows the learning
rate to change as needed. Because the balance
of the learning rate is essential in SGD, the
method is not always the best solution. In both
U-Net and U2-Net topologies, the Adam
optimizer consistently produced optimal
results, striking a compromise between
accuracy and loss reduction. The Adagrad and
Adadelta optimizers were comparatively

ineffective, especially for U2-Net models,
often leading to elevated loss values and

UNet (Adam) E -
256 256 i3 4

diminished
measurements.

3.2. Best U-shaped Model for Debris Flow
Detection

stability in  performance

Figure 9 illustrates the detection results of
large debris flows using different U-shaped
models with various training algorithms and
input sizes, highlighting the diversity in
detection ability and accuracy. For the U-Net
(Adam) model, when the input size is
256256, the results show that the marked
areas are quite detailed but focus only on large
slides, ignoring more minor details. When the
input size is reduced to 128x128, the detection
ability is significantly reduced, especially at
the edges. At 64x64, the marked area
becomes large, but accuracy is reduced
dramatically, resulting in a significant amount
of noise.

Figure 9. Outcome comparison of the U-shaped DL models in large debris flow trace detection on a
slope. The color shows the different debris-flow regions detected from five DL models.
The right bottom sub-figure shows the overlayed areas to see the more apparent differences
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In such situations, U-Net proves helpful
for outlining large debris flows where the
image has high resolution; however, its
performance suffers at smaller image sizes.
The U2-Net (Adam) model detects huge
areas, including non-slide traces. This
suggests that, while it is sensitive to general
features, it cannot fine-tune. The U-Net
(Adadelta) model, with an input size of
64x64, is better at detecting large slip areas
and has good coverage; however, noise still
persists. The choice between U2-Net (Adam)
at 64x64 and U-Net (Adam) at 128x128 or
256%256 should depend on whether you need
to survey a wide or narrow area; the wider-
area method is better for wide-area detection,
but the finer-scaled one is for more accurate
identification. The combined model results
show that agreement between places found by
more than one model is usually more accurate.
However, it is still easy to see the differences
between the methods. U-Net (Adam), which
has a bigger input size, is better at finding
large slips in detail. U2-Net (Adam) and

UNet Adam (256x256)

PO R

i % UNet Adam (128x128)

U-Net (Adadelta), on the other hand, are
better at covering large areas, but they need to
be improved to lower noise and find a better
balance between accuracy and detecting
range.

Figure 10 shows what happens when
different deep-learning models are used to
find debris flows in a watershed. It
demonstrates that the choices and methods
were effective in various situations. First, the
U-Net model, using the Adam optimization
method and a 256%256 size, identifies a few
collapse tracks. In other words, the high level
of accuracy might not be suitable for
modeling small, complex objects on the
ground. Reducing the input size to 128x128
improves the model's ability to detect collapse
tracks, and the results show more details
in specific areas. Further decreasing the
resolution to 64x64 with the Adam optimizer,
the model detects more zones that are
distributed across the basin. This indicates
that this size is more suitable for studying
complex landscape features.

UNet Adam (64x64)

Debris-flow traces
April 2017
(Bat Xat district,
Lao Cai province)

Figure 10. Outcome comparison of the U-shaped models in small to medium debris flow trace detection
in a basin. The smaller input size allows for the detection of more debris flows
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U-Net performs significantly better with
the Adadelta optimization method at a 64x64
size, achieving both accuracy and clarity. The
yellow regions indicate where debris flows
occurred in 2018 and 2019 in the Bat Xat
district. In this case, the Adadelta method
shows that it made the model converge better
than Adam. The U2-Net model with the
Adadelta method and the same 64x64 scale
merged both debris flows with regular flows
containing rocks on the bottom. It illustrates
the reality of the flows during heavy rain. All
these regions covered by water.
However, after rainfall, debris flow traces can
be observed in the yellow areas, as indicated
by the U-Net Adam (64%x64) model.

3.3. Debris flow Monitoring in Bat Xat
district, Lao Cai province

The research used the U-Net-Adam model
with an image dimension of 64x64, as
indicated by the model comparison findings,
to examine various regions, Yyielding the
outcomes shown in Fig. 11. The pink dots on
the map, indicating debris flow occurrences,
reveal a very irregular distribution throughout
various regions in Bat Xat district. Most of the
debris flows are in the western part of the
district, where there are five debris flows for
every 10 ha. The southern part of the area
also had major failures, though not as many as
in the western part. In some places that are
yellow and orange, there are between a middle
and a high number of debris flows. The land's
shape, the amount of water on the top, or the
ease with which the rocks and dirt in the area
sink could all be to blame.

On the other hand, most of the central and
eastern parts of the district are covered in
green. There are few or no debris flows in
those areas (0.10 debris flows per 10 ha).
These places have fewer steep slopes, more
stable ground, or are less influenced by factors
that can cause debris flows, such as heavy rain

Wwere

or human activities. The location of debris
flows is also closely connected to both natural
and human-made factors. Debris flow
hotspots are often found near major roads or
rivers, where the ground can be worn away by
buildings, traffic, or water. This study helps
identify high-risk areas, enabling more
effective land management and disaster
prevention.

The satellite images, spanning from
2013 to 2020, show how the debris flows
changed over that period in the study area.
The places that were damaged are shown in
pink. Initially, on 14 June, 2013, the collapse
affected only a small area and was spread out
over several smaller areas. By 16 March 2015,
the debris flows had significantly expanded,
with more eroded strips, especially spreading
near the hilly parts close to the road (Fig. 12).
On 23 March 2017, the debris flows continued
to increase in size, with the pink areas
spreading, showing the increasingly apparent
impact on the entire hilly landscape. By 6
February 2019, the debris flow was at its most
intense, with large slide strips appearing and
developing deeper into the hilly area. On 18
April 2019, the debris flow continued to
expand, although its speed seemed to have
slowed compared to the previous period;
however, the affected areas became more
clearly defined. The debris-flow area tended
to stabilize, although erosion at the margins
persisted, and the expansion slowed down by
18 December 2019. Ultimately, the debris
flow attained its zenith on 10 November 2020,
as the debris-flow areas merged into larger
regions. However, there was no significant
expansion in comparison to 2019. The flow's
gradual yet intricate growth, exemplified by
substantial surges in 2015 and 2019, may be
attributed to natural factors such as intense
rainfall, fragile geological formations, or
artificial influences like deforestation and
construction activity, as illustrated in this
sequence.
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Figure 11. The appearance of debris flow traces after the rainy season in 2018 in Bat Xat district,
Lao Cai province, Vietnam, was detected by a (64%64) U-Net-Adam model. The picture in the third
region is shown in Fig. 12

306



Ngo Van Liem et al.

Figure 12. The evolution of debris-flow traces detected by the (256%256) U-Net-Adam model through
satellite images (2013-2020) in the Y Ty, Bat Xat district, Lao Cai province (Region 3 in Fig. 11)

4. Discussions

4.1. Possible debris flow monitoring using
remote sensing

Both U-shaped models can detect debris
flow traces in three-band Worldview-2
images, especially in slope-unstable locations.
Based on high-resolution images, as proposed

by McKean and Roering (2004), Hung et al.
(2015), and Kuschel et al. (2024), traces of
natural hazards can be detected over data and
technology constraints, even in limited areas.
Compared to medium-resolution data (such as
Landsat 8 and Sentinel-1 and -2), as done by
Pour and Hashim (2017), high-resolution
images helped DL models recognize small
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debris flow traces. This study recommends
using trained models to address the
shortcomings of traditional mapping methods,
which are complicated by the complex shapes
of debris flows. Debris flows are often
recurrent and inherited. It makes monitoring
and assessing the movement and change of
these hazards difficult if only visually and
monitoring at specific location using
traditional ~ geological =~ methods. The
movement can be small, from 10-20m/year -
equal to the spatial size of medium-resolution
satellite images. Therefore, the high-
resolution is needed to monitor the tiny
movement of this hazard over time.

Kirschbaum et al. (2015) and Dang et al.
(2024a) proposed that satellite images can be
reviewed after annual disasters, allowing for
the selection of suitable action and recovery
solutions. Regarding spatial resolution,
medium-resolution remote sensing data
obscure the head, foot, and materials of debris
flow traces larger than 1,200 m?. Therefore,
this data can only be used to identify debris
flow locations rather than their borders. Based
on the Worldview-2 images, this study
enables scientists and managers, as
demonstrated in the case study, to track debris
flows and slope instabilities larger than 12 m?,
as previously done by Tran (2013) and Van
Thang et al. (2021). Regarding the temporal
resolution, Sentinel-1 can be obtained on
average twice per month, while Sentinel-2
images can be obtained once per month, as
done by Handwerger et al. (2021). Therefore,
no weekly debris flow monitoring is feasible
based on the medium-resolution data.
Meanwhile, the high-resolution data may be
obtained from Worldview-2, as well as UAVs.
The trained models can detect debris flows in
real time and update Vietnam's danger maps
at any time.

Input data consistency plays a key role in
the training and evaluation of deep learning
models for detecting mudflows. In this study,
remote sensing data were collected from
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various mountainous provinces in Northern
Vietnam, primarily using high-resolution
Google Earth Pro images (0.7 m) with a
uniform scale of 1:500. However, spatial
consistency still presents some challenges.
These images were taken at various locations
and times, resulting in differences in shooting
angles, 3D terrain distortion, and geometric
errors. Although calibration steps using roads
and ArcGIS StreetView tools were performed,
the risk of spatial errors still exists and can
reduce accuracy when overlaying image
samples from multiple areas. In addition,
temporal consistency is also affected by the
use of images from different years, spanning
from 2014 to 2023. These remote sensing data
are inconsistent in terms of seasonality,
weather conditions, or time elapsed after the
rock flow event. In particular, in areas with
industrial plantations such as acacia and
Eucalyptus, the 3-5 year planting-harvest
cycles create large fluctuations in land cover,
which can easily be confused with the actual
rock flow traces. These changes reduce the
reliability of images at different times without
additional preprocessing steps such as NDVI
analysis, land wuse mapping, or field
validation. Therefore, maintaining spatial and
temporal consistency is a prerequisite to
ensure the representativeness and accuracy of
deep learning models.

Monitoring and utilizing regional debris
flow data is essential for creating big data and
providing early warning signals. A
comprehensive database of debris flow
processes spanning months and years may
help managers restrict development in debris
flow-prone areas and adopt mitigation
methods more quickly. Particularly in tropical
countries,  detecting, = monitoring, and
predicting debris flows requires high-
resolution remote sensing due to the recent
rapid changes in climate. Remote sensing
images give statistical data and debris flow
boundaries for classification and description.
Training models can identify fractures, define
events as active or inactive, calculate
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movement speed, and monitor sliding blocks.
They can become a powerful source of
information for managers to provide suitable
and timely decisions for upcoming natural
hazards.

4.2. Deep Learning's Role in Debris Flow
Monitoring in the Future

In this research, U-Net, rather than
DeepLabv3+, Mask R-CNN, or Swin
Transformer, as done by Ju et al. (2022), was
chosen since it is simpler for a computer to
process and performs well with less data.
Since such advanced models require a
significant amount of information, powerful
computers, and a considerable amount of time
to train, they are not well-suited for use in
mountainous areas, where resources and
conditions are limited. In contrast, U-Net
enables fast training, a compact model size,
and easy deployment and can achieve good
performance with high-resolution but not
overly diverse remote sensing data.
Additionally, U-Net is more suitable for
detecting traces of debris flows in
mountainous areas where the terrain is
rugged, and satellite images may be obscured
by vegetation cover or haze. Therefore, using
U-Net with optimal algorithms, such as
Adam, is considered a reasonable choice, as it

strikes a balance between accuracy,
processing  performance, and practical
applicability.

The study indicated that U-Net, combined
with the Adam optimizer, detects new debris
flows more effectively than other options. In
24 trained models, four trained algorithms
may discover debris flow traces. These
findings suggest that the U-Net model may
yield reliable results with an input size of 64 x
64. In addition to the accuracy metrics, the
model's performance was evaluated using
predictions for new data to prevent overfitting
cases. The outcomes from the trained U-Net
models outperformed those of other models in
terms of segmentation accuracy, coming close
to the ground-truth interpretation.

The optimization strategies and model
development steps in this study can be used to
develop new and more optimal debris-flow
detection models in the future. The five
accuracy values and loss functions monitor
model performance during the training
process, and different optimization methods
were used to improve accuracy and efficiency.
This optimizer creates reliable debris flow
models when used in real-time monitoring.
Managers and scientists may utilize trained
deep-learning models to track debris flows
following this research initially. However, this
study's Worldview-2 image samples included
1,780 km® of debris flow and non-debris flow
traces. More samples are needed for a
functional monitoring system, especially with
samples obtained from UAYV data.

The authors tested the integration between
Worldview-2 images and ALOS-DEM data at
a 12.5 m resolution. However, it enables
U-shaped models to differentiate between old
and new debris flows. The U-shaped models
were unable to capture a broad range of
topographic features in the debris flow areas.
It was found that topography changes are not
representative of debris-flow and non-debris-
flow regions, resulting in poor performance.
As a solution, UAV-based debris flow
monitoring should include both multi-spectral
data and larger-scale topographical data.
Remote sensing data and deep learning (DL)
models developed in this study can be utilized
for continuous, cost-effective debris flow
monitoring in mountainous areas with limited
resources.

5. Conclusions

Various U-shaped models were tested in
this study, which demonstrates the importance
of deep learning methods for debris flow
detection. A field indicator system and high-
resolution remote-sensing data are essential
keys for locating debris flow traces. A careful
investigation reveals that the input image size
and backbone design have a significant impact
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on model performance. The U-Net
architecture, combined with the Adam
optimizer method and a 64x64 input size,
makes the system more optimal for
identifying new debris flows outside the
training data. It utilizes high-resolution remote
sensing data to enhance debris flow
monitoring and evaluation, allowing risk maps
to be updated quickly.

Advanced tweaking and assessment of
deep learning models used to forecast debris
flows may enhance their accuracy and
performance, particularly for debris flows in
the Northwestern path of Vietnam. In
resource-constrained environments, high-scale
topographic data and continuous monitoring
programs may improve model performance by
leveraging big data collected over time. These
findings help researchers, managers, and
governments improve hazard risk prediction
and reduce the damage from this hazard in the
future.
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