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ABSTRACT

In construction, achieving adequate soil compaction is essential for ensuring the strength and stability of
geotechnical structures, with Optimum Water Content (OWC) being a critical parameter. Traditional laboratory
methods for determining the OWC are accurate but often time-consuming and resource-intensive. This study
investigates the potential of advanced machine learning methods: Random Forest (RF), Support Vector Machines
(SVM), and Artificial Neural Networks with Multilayer Perceptron (ANN-MLP) to predict the OWC of soil using a
curated dataset of over 214 soil samples collected from the Van Don - Mong Cai expressway construction project
(Vietnam). The models were developed using input factors such as specific gravity, grain size distribution, organic
content, and Atterberg limits. Among the three approaches, the RF model exhibited the best performance (R? = 0.84,
RMSE = 1.07% and MAE = 0.78%) compared with other models such as ANN (MLP) (R* = 0.44, RMSE = 2.02%
and MAE = 1.61%) and SVM (R? = 0.63, RMSE = 1.65% and MAE = 1.17%). Partial Dependence Plot (PDP)
analysis further highlighted fines content, plasticity indices, and organic matter as key influencing factors with a high
impact on the predictive capability of the model. The findings demonstrated that the RF model offers an accurate and
efficient tool for estimating the OWC of soil, with potential to reduce reliance on extensive laboratory testing and

support faster, data-driven geotechnical decision-making.

Keywords: Optimum Water Content (OWC), advanced machine learning Methods, RF, SVM, ANN, soil
compaction, Partial Dependence Plot (PDP).

refers to the moisture content at which a soil
achieves its maximum dry density under a
effort. An
estimation of the OWC of soil is critical, as

1. Introduction

In geotechnical engineering, determining
the Optimum Water Content (OWC) of soil is
essential for achieving effective compaction,

given compactive accurate

which in turn governs the strength, stability,
and durability of structures such as
embankments, road subgrades, and
foundations (Blotz et al., 1998). The OWC

*Corresponding author, Email: lehuyentrang500@gmail.com

deviations can lead to under-compaction,
reduced load-bearing capacity, long-term
settlement, and, in severe cases, structural
failure (Mueller et al.,, 2003). Beyond
compaction control, knowledge of the OWC
supports a range of applications, including
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slope stability assessment, landfill design, and
ground improvement techniques.
Conventionally, the OWC is determined
through standardized laboratory tests such as
the standard and modified Proctor compaction
tests (Aragon et al.,, 2000). While reliable,
these methods are Ilabor-intensive, time-
consuming, and impractical for rapid field
assessments, particularly in large-scale
construction projects. Moreover, they often
overlook the complex, nonlinear interactions
among various soil properties, such as grain

size distribution, plasticity, and organic
content,  that  significantly  influence
compaction behavior. To address these

limitations, the researchers have proposed
empirical and statistical models to estimate
the OWC from easily measurable soil
parameters (Hassan et al., 2017; Lai et al,
2017). Although these models are simple and
accessible, they are typically derived from
small, site-specific datasets and often lack
generalizability across diverse soil types and
conditions.

Recent advancements in data science have
led to the growing application of machine
learning (ML) techniques in geotechnical
engineering, offering a promising alternative
for predictive modeling (Prakash et al., 2024).
For example, Benbouras and Lefilef (2023)
advanced the field by employing different
progressive ML models to predict the OWC
and maximum dry density (MDD). The study
compiled a database of 147 samples and
implemented K-fold cross-validation to ensure
robustness. Random Forest (RF) emerged as
the top performer compared with other models
such as Gaussian Process (GP), Support
Vector Machines (SVM), and Artificial
Neural Networks (ANN). Li et al. (2024)
compared the efficacy of four popular ML
algorithms, including SVM, ANN, RF, and
Extreme Gradient Boosting (XGBoost), for
predicting MDD and OWC using 168 soil
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samples. XGBoost emerged as the most
accurate model (R? > 0.92), with liquid limit
(LL) and plastic limit (PL) identified as the
most influential input features. Khatti and
Grover (2023) presented a comparative
evaluation of four ML models, such as Least-
Square Boost Random Forest (LSBoostRF),
Long Short-Term Memory (LSTM), Least-
Square Support Vector Machine (LSSVM),
and ANN to predict compaction parameters of
soil, namely MDD and OWC. For MDD
prediction, the LSSVM model demonstrated
the highest accuracy and outperformed other
models. For the OWC, LSTM showed the best
performance. In general, ML models such as
ANN, SVM, and RF are particularly effective
in capturing complex, nonlinear relationships
in large and heterogeneous datasets without
the need for predefined functional forms.
Previously mentioned studies have
demonstrated the potential of ML models to
outperform traditional empirical approaches in
predicting various geotechnical properties,
including the OWC.

However, there is limited understanding of
how different ML models perform relative to
one another when applied to the OWC
prediction, and how soil parameters influence
the prediction outcomes (Khatti and Grover,
2023; Li et al.,, 2024). In addition, it is
necessary to evaluate ML models in specific
regions to identify the most suitable model for
each dataset. In this context, the present study
aims to develop and compare advanced ML
models: RF, SVM, and ANN (MLP) for
predicting the OWC of soils in Vietnam. A
curated dataset of 214 soil samples gathered
from the Van Don - Mong Cai expressway
construction project was collected and used to
train and evaluate the models. Various
validation metrics, such as R, RMSE, and
MAE, were selected for wvalidation and
comparison. Python software was utilized for

data processing and modeling in this study.
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2. Materials and Methods
2.1. Data collection and analysis

The data of this study were collected from
the Van Don - Mong Cai expressway
construction project (Vietnam). The research
data were collected and consist of 214 sets of
experimental results, evenly distributed across
various locations along the entire expressway.
Soil samples were directly taken from the
construction site and material quarries, then
transported to the laboratory for the
determination of geotechnical and physical
properties. It includes results from standard or
modified Proctor compaction tests and routine
soil classification tests, such as grain size
analysis and Atterberg limits. Only datasets
with complete records of the OWC and
essential soil index properties were included to
ensure consistency and reliability for model
training and evaluation. The data is organized
in a tabular format, with each row representing
a unique soil sample and each column
corresponding to a soil parameter. Eight input
variables were selected for their geotechnical
relevance to compaction behavior: Plastic
Limit (PL), Silt Liquid Limit (LL), and Clay
content (SC), Fine Sand content (FS), Coarse
Sand content (CS), Specific Gravity (G),
Organic content (O), and Plasticity Index (PI).
The target variable is the OWC.

The selected input variables capture both
physical and physicochemical soil properties
influencing moisture-holding capacity and
compaction. More specifically, G reflects the
density of soil solids relative to water. Higher
G typically correlates with lower OWC due to
reduced pore space. CS and FS affect drainage
and packing. CS promotes drainage, lowering
the OWC, while fine sand increases water
retention, potentially raising the OWC. SC
with high surface area and electrochemical
activity in finer particles increases water
adsorption, leading to higher OWC. Even in
small amounts, the porous nature increases
water retention, elevating the OWC. LL and

PL indicate moisture boundaries for soil
consistency. Higher values suggest greater
clay activity and moisture requirements for
compaction PI measures the moisture range
for plastic behavior. Higher PI, linked to
greater clay content, correlates with higher
OWPC. This selection ensures a comprehensive
representation of soil behavior, enhancing the
models' ability to predict the OWC across
diverse geotechnical conditions using ML.

Table 1 provides a statistical overview of
the dataset, detailing the mean, standard
deviation (std), minimum, 25™ percentile,
median (50%), 75™ percentile, and maximum
for each variable. More specifically, G: Mean
is 22.06, but a minimum of 0 suggests
potential data errors requiring preprocessing.
CS and FS: Moderate wvariability (CS:
3-46.3%, FS: 2.5-41.5%) reflects diverse
grain sizes. SC: The high mean (44.81%) and
wide range (17.87-88.7%) indicate the
inclusion of both coarse- and fine-grained
soils. O: Low mean (1.51%) but significant
for water retention. LL, PL, PI: Moderate to
high plasticity (LL: 2.08-48.45%, PI: 0.91—
27.48%) supports diverse soil types. OWC:
Mean of 14.01% and range of 9.3-21.5%
align with typical compaction requirements.
The dataset's diversity across soil types
supports robust predictive modeling.

Figure 1 illustrates the frequency
distributions of the wvariables, highlighting
their statistical characteristics. For G, a
bimodal distribution with peaks at 20-25 and
35-40, and a spike at 0, indicating potential
outliers. With CS, moderately right-skewed,
with a cluster at 20-30%, reflecting coarse-
grained dominance. For FS, highly right-
skewed, with a peak at 2.5-10%, suggesting
limited acceptable sand content. With SC,
approximately normal, centered at 45-50%,
ideal for modeling fine-grained soils. For O,
left-skewed, concentrated at 1-2%, consistent
with low organic matter in geotechnical
contexts. For LL and PL, right-skewed,
clustered at 35-45% (LL) and 18-22% (PL),
indicating moderate to high plasticity. With
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PI, relatively symmetric, uniform between
10% and 25%, capturing cohesive soils. With
OWC, the distribution is symmetric, slightly
platykurtic, and centered at 14—15%, making

it suitable for predictive modeling. Skewed
distributions (G, FS, O) and outliers suggest
the need for normalization or outlier treatment
to optimize ML performance.

Table 1. Statistical summary of the dataset used for OWC prediction

No. Variable Mean SD Min. 25% 50% 75% Max.
1 G 22.057 13.296 0 9.075 24.75 31.7 51.4
2 CS 24.101 7.017 3 20.7 23.7 27.775 46.3
3 FS 9.035 6.468 2.5 4.6 7.25 11 41.5
4 SC 44.807 10.447 17.87 37.75 44.55 49.2 88.7
5 0 1.509 0.373 0.12 1.2525 1.51 1.77 2.94
6 LL 39.515 6.173 2.08 36.638 39.99 43.508 48.45
7 PL 20.318 3.068 1.17 19.293 20.835 21.888 28.49
8 PI 19.198 4.078 0.91 16.83 18.435 22.32 27.48
9 OWC 14.01 2.619 9.3 12.19 14.275 15.4 21.5
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Figure 1. Frequency distributions of input and output variables used in the modeling process

Figure 2 presents a correlation matrix
quantifying pairwise linear relationships
between variables and the OWC, with values
varying from —1 (strong negative) to
+1 (strong positive). For G, there is a moderate
negative correlation with OWC (—0.41),
reflecting denser particles reducing water
retention. Strong negative correlations with SC
(—0.74) and FS (—0.59) indicate lower G in
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finer soils. With CS, there is a negligible
correlation with OWC (—0.01), but an inverse
correlation with SC (—0.29) and a positive
correlation with PL (0.27). For FS, there is a
weak positive correlation with OWC (0.16), as
well as mild positive correlations with SC
(0.22) and PL (0.21). For SC, the strongest
positive correlation with OWC (0.43) is driven
by high water adsorption in the fines. For O,
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mild positive correlation with OWC (0.11),
reflecting moisture retention by organic matter.
In the case of LL, PL, PI, moderate positive
correlations with OWC (LL: 0.39, PL: 0.37, PI:
0.31), emphasizing the plasticity role. Strong
intercorrelations (LL—PL: 0.82, LL—PI: 0.90,

FS CS

SC

LL

PL

Pl

4 Ui -0.01 0.16 0.43 0.11

owC

G cs FS  SC 0

LL  PL PI

PL-PI: 0.48) reflect a shared dependence on
clay content. The matrix highlights the
dominance of SC, LL, PL, and PI in predicting
OWC, validating their inclusion. Nonlinear
relationships suggest ML models must capture
complex interactions for accurate predictions.
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Figure 2. Correlation matrix of variables used in the modeling process

To enhance the performance and stability
of ML models, especially those sensitive to
feature scaling, standard normalization was
applied in this study. It standardizes the data
by removing the mean and scaling to unit
variance. This process ensures that all features
contribute equally to the learning process,
reducing potential bias due to differing scales.
While standard scaling does not eliminate
outliers, it mitigates their impact by centering
and scaling the data, which can enhance the
convergence and accuracy of the ML models.

In the modeling, the data was randomly
split into two parts, including a training part
(70%) and a testing part (30%) used for
training and validating the models,
respectively. This ratio for splitting the
training and testing data was proposed by

previous published works (Hoang et al., 2025;
Nguyen et al., 2021).

2.2. Methods used
2.2.1. Random Forest (RF)

RF, introduced by Breiman (2001), is an
ensemble learning method that enhances
decision tree accuracy and reduces overfitting
by averaging predictions from multiple trees.
RF employs bootstrap aggregating (bagging)
and random feature selection to create diverse
trees (Zhou et al., 2023). For each tree, a
random subset of training data is sampled
with replacement, and a random subset of
features is used at each split, minimizing
correlation and improving generalization.

Mathematically, given a training dataset
D=(x,y,)",» Where x,) represents

X, = (X1 X500
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the vector of input features for the “th soil
sample and is the corresponding target OWC,
the RF regression prediction f(x) for a new
x input is given by the average of the

predictions from M individual trees (Breiman,
2001; Kim, 2024):

f(x>=$ﬁn,(x) 0

Where T (x) denotes the prediction of the
m—th decision tree.

Each decision tree T, is built through
recursive binary splitting of the feature space
to minimize the variance of the target variable
within each terminal node (leaf). At each split,
the algorithm selects the feature and split
point that minimizes the sum of squared
residuals:
min ,{ PIRECUESTS D SN G )2} 2

X;€R (j,5) X, ERy (J,5)
Where j indexes the features, s is the split
threshold, and R (j,s) and R,(j,s) are the
two regions created by splitting the data on
feature at point s. ;Rl and ;R2 represent the

mean target values in areas R and R,,

respectively.

RF wuses out-of-bag (OOB) error for
internal validation, leveraging unsampled data
to estimate performance (Breiman, 2001). RF
excels in capturing nonlinear relationships
between soil parameters and OWC, is robust
to noise, and provides variable importance
scores. However, it can be computationally
intensive and less interpretable than single
trees. In this study, the hyperparameters used
to train the RF include the number of trees
(100), the maximum depth of the tree (set to
none), and the bootstrap (set to true).

2.2.2. Support Vector Machines (SVM)

SVM is a supervised learning algorithm
introduced initially by Vapnik (1995). SVMs
are primarily designed for classification tasks
and are based on the principle of finding an
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optimal hyperplane that maximizes the margin
between classes in a high-dimensional feature
space (Nhat et al., 2025; Vapnik, 1995). The
core idea is to transform input data into a
higher-dimensional space using kernel
functions, where a linear separation between
classes becomes possible (Vapnik, 2013). The
data points that lie closest to the decision
boundary, known as support vectors, are
crucial in defining this hyperplane (Navidi et
al., 2022).

To handle non-linear relationships between
features, SVM employs kernel functions such
as the linear kernel, polynomial kernel, and
radial basis function (RBF) kernel (Pal et al.,
2024; Yin et al., 2023). The RBF kernel is
especially popular for its flexibility in
modeling complex, non-linear boundaries
(Nguyen et al., 2022). SVM incorporates
regularization parameters to control the trade-
off between maximizing the margin and
minimizing classification errors, thus reducing
the risk of overfitting. This makes it
particularly useful for datasets with limited
samples but complex feature interactions. In
this study, the hyperparameters used to train
the SVM include: regularization parameter
(1), kernel type (RBF), epsilon (0.1).

2.2.3. Multilayer Perceptron neural network
(MLP)

ANN was inspired by the structure and
functioning of the human brain's neural
networks (Wu and Feng, 2018). Among the
various ANN architectures, the Multilayer
Perceptron neural network (MLP) is one of
the most extensively applied (Gardner and
Dorling, 1998). Initially conceptualized in the
1960s and significantly advanced in the 1980s
with the development of the backpropagation
learning algorithm, the MLP has become a
cornerstone in the modeling of complex,
nonlinear systems across multiple domains
(Gardner and Dorling, 1998), including
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geotechnical engineering (Pham et al., 2019).
An MLP includes an input layer, one or more
hidden layers, and an output layer, each
composed of interconnected processing units
known as neurons (Pham, 2024). Each neuron
calculates a weighted sum of its inputs and
applies a nonlinear activation function to
introduce nonlinearity into the model. This
nonlinearity is critical, as it allows the
network to learn and represent complex
relationships in the data. In geotechnical
applications, such as predicting the OWC of
soils, MLP are particularly effective. They can
model the intricate, nonlinear relationships
between multiple input variables - such as
grain size distribution, Atterberg limits, and
other soil properties and the target output.
This capability makes MLPs valuable tools
for tasks involving complex data interactions
that are not easily captured by traditional
empirical methods.

Mathematically, the output of the j-th
neuron in the /-th layer, oﬁ.” , is computed as

(Wu and Feng, 2018):

ol = [zw.“o;”ub;”j 0]

Where: 5, is the number of neurons in the
previous layer (I-1), W() is the weight
connecting the ‘—z neuron in layer (I-1) to
the /-th neuron in layer, o{™" is the output
from the ' -th neuron in the previous layer,

is the bias term for neuron; in layer /,
/ (.)and is the activation function, typically
nonlinear (e.g., sigmoid, ReLU).

For regression tasks like OWC prediction,
the output layer usually employs a linear
activation function to produce continuous
values. In this study, the hyperparameters
used to train the ANN (MLP) include: number
of neurons in the hidden layer (100),
maximum number of iterations (1000).

2.2.4. Validation metrics

In this study, three widely recognized
validation metrics were employed to assess the

regression models developed for predicting the
OWC of soil: Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and
Coefficient of Determination (R?).

R? measures the proportion of variance in
the observed data explained by the model. As
a normalized metric ranging from 0 to 1,
higher values indicate a better model fit (Duc
et al., 2025; Nguyen et al., 2025). R? provides
an intuitive sense of how closely the predicted
values align with the actual observations,
serving as an indicator of the model's
explanatory power. Mathematically, R? is
defined as (Phan and Ly, 2024; Phung et al.,
2023):

Z =)

R*=1- M
Z(yi—y)

Where J is the mean of observed values, J, is
the predicted value, y; is the observed
value, and N is the number of samples.

RMSE represents the standard deviation of
the prediction errors, effectively quantifying
the average magnitude of the residuals (Pham
et al.,, 2021). Because errors are squared
before averaging, RMSE penalizes larger
deviations more heavily, making it sensitive
to outliers. It is expressed in the same units as
the target variable, offering a direct
interpretation of typical prediction error (Ngo
et al., 2022; Nguyen et al., 2023):

1 & n 2
N;(yi _yi)

MAE captures the average absolute
difference between predicted and actual
values. Unlike RMSE, MAE treats all errors
equally, making it a more robust measure in
the presence of outliers. It reflects the typical
size¢ of  prediction errors  without
disproportionately =~ emphasizing  extreme
values. MAE is expressed as (Prakash et al,,
2022):

RMSE = 2)

MAE:NZ[V;‘ _j)i | (3)
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In this study, the combined use of R?
RMSE, and MAE ensures a robust evaluation
of the ML models' ability to accurately predict
the OWC across diverse soil types, thereby
supporting informed model selection and
reliable deployment in geotechnical practice.

2.2.5. Taylor Diagram

The Taylor Diagram, proposed by Taylor
(2001), is a graphical tool to evaluate and
compare the performance of multiple ML
models in predicting the OWC of soils. In the
Taylor Diagram's polar coordinate system, the
radial distance from the origin represents the
model's standard deviation, indicating the
spread or variability of the predictions
(Taylor, 2001). The angle corresponds to the
Pearson correlation coefficient between the
predicted and observed values, reflecting the
degree of similarity between the pattern and
the observed values (Ghorbani et al., 2025).

In this study, the Taylor Diagram
facilitated direct visual comparison of the
predictive performance of various models,
including ANN (MLP), SVM, and RF, against
the measured OWC values. By plotting each
model on the diagram, it was possible to
quickly identify those that most accurately
reproduced the observed soil behavior. The
use of the Taylor Diagram enabled a more
nuanced evaluation than traditional single-
metric approaches, revealing trade-offs
between correlation strength and variability
representation (Jose et al., 2022). In addition,
the Taylor Diagram proved to be a valuable
validation tool, enabling an integrated and
visually intuitive comparison of model
performance and thereby supporting the
selection of the most suitable ML model for
geotechnical prediction tasks.

2.2.6. Partial Dependence Plots (PDP)

PDP, introduced by Friedman (2001), was
employed in this study as a model-agnostic
interpretability technique to analyze the
influence of individual input variables on the
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predictions made by complex ML models
(Friedman, 2001). PDP is beneficial for
interpreting "black-box" models such as RF,
SVM, and ANN (MLP), allowing for
visualization of the marginal effect of selected
features on the predicted outcome without
altering the original model structure.

The main principle of PDP is to isolate and
visualize the effect of selected input features
on the predicted response by averaging out the
influence of all other features (Johnson et al.,
2022). Specifically, for a prediction
model f(x) trained on input features
(X5, X.), where X is a subset of features of
interest and . represents the complementary

set of all other features, the partial dependence
function is defined as the expected prediction
over the marginal distribution of Xx,_

(Friedman, 2001):

o, () =B [ F 0 X) | = [ Fxgoxe)dPOxe) - (1)

Where X is a fixed value or range of the
features of interest, and P(x,) is the marginal
probability distribution of X..

In practice, the partial dependence is
estimated using the available data by
averaging predictions across all observations

while fixing X to specific values:

A

o () = % iﬂxs,xa) @

Where N i1s the number of observations
and x.are the observed values of the

complementary features.
3. Results and discussion

3.1. Model validation and comparison

Validation of the models (RF, SVM, and
ANN [MLP]) was implemented on both
training and testing datasets using R%, RMSE,
and MAE metrics. Figure 3 presents scatter
plots of predicted versus observed OWC values

for the SVM, RF, and ANN (MLP) models,
along with R? wvalues. The SVM model
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achieved moderate predictive accuracy, with an

R? of 0.64 during training and 0.63 during

testing, indicating consistent performance

without overfitting. The RF model substantially

outperformed the others, achieving an R? of

0.96 during training and 0.84 during testing.
(2) SVM - Training (R*=0.64)

This shows excellent model fit and strong
generalization. In contrast, the ANN (MLP)
model showed the weakest performance. The
R? was 0.60 for training and dropped to 0.44 in
testing, revealing limited generalization and
possible overfitting.

(b) SVM - Testing (R*=0.63)
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Figure 3. R? values of the models: (a) SVM training, (b) SVM testing, (c) RF training,
(d) RF testing, (¢) ANN (MLP) training, and (f) ANN (MLP) testing

Figure 4 provides a comparison of the
predicted versus observed OWC values.
During the training phase, all models follow
the general trend of the data, but the RF
predictions most closely align with actual
values across both high and low OWC ranges.
SVM maintains acceptable trend tracking,
though with increased deviation at local
extremes. The ANN (MLP) model shows
more erratic behavior, with significant
fluctuations and poorer tracking, especially
during testing.

Figure 5 compares the models using three
key metrics: R?2, RMSE, and MAE across
training and testing datasets. RF consistently
achieves the highest R? values (0.96 training,
0.84 testing), the lowest RMSE (0.53 training,
1.07 testing), and the lowest MAE (0.39
training, 0.78  testing). SVM  shows
intermediate performance, while ANN (MLP)
yields the highest error values in both RMSE
and MAE.
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(a) Actual values vs predicted values - Training
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Figure 4. Actual vs predicted values of the models: (a) training and (b) testing
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Figure 5. Comparison of the validation metrics of the models: (a) R?, (b) RMSE, and (c) MAE
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Figure 6 displays a Taylor Diagram-
based comparative analysis. The RF model
appears closest to the reference point in all
panels, indicating the highest correlation
and lowest error. SVM is moderately
placed, while M ANN (MLP) LP lags

(a) Taylor Diagram - RMSE

Reference
SVM

RF

ANN (MLP)

(c¢) Taylor Diagram - MAE

Reference
SVM

RF

ANN (MLP)

(e) Taylor Diagram - R?

Reference
SVM

RF

ANN (MLP)

behind. The visual clustering around the
reference point supports the numerical
validation  metrics, consolidating the
conclusion that RF provides the most
accurate and stable performance among the
evaluated models.

(b) Taylor Diagram - RMSE

Reference
SVM

RF

ANN (MLP)

(d) Taylor Diagram - MAE

Reference
SVM

RF

ANN (MLP)

(f) Taylor Diagram - R?

Reference
SVM
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ANN (MLP)

Figure 6. Taylor diagram of the models: (a) RMSE training, (b) RMSE testing,
(c) MAE training, (d) MAE testing, (e) R” training, and (f) R” testing
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In summary, the findings of this study
highlight the superior predictive performance
of the RF model in estimating the OWC of
soils. Its ability to generalize well to unseen
data highlights its suitability for practical
geotechnical applications. From a
computational perspective, RF's ensemble
which

aggregation (bagging) and randomized feature

structure, leverages  bootstrap

selection, enhances model stability and
reduces variance, allowing it to handle
nonlinearities and variable interactions

effectively (Ahmad et al.,, 2017; Breiman,
2001). This is particularly advantageous for
modeling complex geotechnical phenomena
where explicit functional relationships are
difficult to define. In contrast, SVM model

requires careful kernel selection and
parameter tuning and may be less adaptable to
heterogenous datasets (Han et al., 2018)
ANN (MLP) model, though theoretically
powerful, exhibited challenges in this study,
including overfitting and poor convergence,
possibly due to limited dataset size and the
high dimensionality of input features (Ahmad
etal., 2017).

Table 2 shows the comparison of the
validation metrics of the RF model used in
this study with previous and published works
using different combination of input variables.
It can be observed that the models used in this
study is comparative with the models used in

the previous and published works.

Table 2. Comparison of validation metrics: current study vs. previous works

Works Models RZ (Testing) RMSE (Testing) | MAE (Testing)

Taffese and Abegaz (2022) ANN 0.55 - -
OME 0.56 - -
Liu et al. (2023) RF 0.82 4.96 -
SVM 0.72 5.33 -

This study RF 0.84 1.07 0.78

ANN 0.44 2.02 1,61

SVM 0.63 1.65 1.17

3.2. PDP analysis

Figure 7 illustrates PDP for the best RF
model, highlighting how key input features
individually influence the predicted OWC
values. PDP for G shows a decreasing trend,
consistent with the physical principle that
denser soils retain less moisture. CS content
displays a slight peak followed by a decline
in the OWC,
retention at higher sand contents. FS shows a
mild increase in the OWC with higher
values, as finer particles tend to hold more

reflecting reduced water
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water. SC content has a strong positive
influence on the OWC, with higher values
substantially increasing predicted moisture
content, aligning with the known behavior of
fine-grained soils. O also shows a marked
increase in the OWC, consistent with the
water-retention capacity of organic matter.
LL and PL both
indicating that plastic soils require more

show upward trends,

water for compaction. PI displays a stepped
increase in the OWC, further emphasizing
the role of soil plasticity in determining
moisture needs.
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Figure 7. PDP analysis of the variables using RF model: (a) G, (b) CS, (c) FS, (d) SC,

(e) O, (f) LL, (g) PL, and (h) PI
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4. Conclusions

In this study, a comparative evaluation of
advanced ML models, including RF, SVM,
and ANN (MLP) for predicting the OWC of
soils using data of 214 soil samples collected
from the Van Don - Mong Cai expressway
construction project (Vietnam) and commonly
measured geotechnical properties such as G,
CS, FS, SC, O, LL, and PL. Results showed

that among the three, the RF model
consistently  demonstrated the  highest
predictive  accuracy and  generalization

capability, outperforming both SVM and
ANN (MLP). PDP analysis highlighted fines
content, plasticity indices, and organic matter
as the most influential predictors, in line with
established geotechnical knowledge.

The findings of this study underscore the
potential of RF as an accurate and efficient

alternative to traditional laboratory-based
OwWC determination methods. By
significantly reducing the reliance on

extensive testing, RF can accelerate decision-
making in geotechnical engineering while
maintaining reliability. Nevertheless, future
work should focus on expanding the dataset to
include diverse soil types, field-scale data, and
varying environmental conditions to enhance
model further.  Additionally,
integrating explainable ML methods and
hybrid modeling approaches may strengthen
interpretability and broaden the scope of ML
applications in geotechnical practice.

robustness
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