Recent monogenic volcanism in North Central Vietnam: Implications for the regional mantle geodynamics

Le Duc Anh, Nguyen Hoang, Tran Thi Huong, Ryuichi Shinjo, Le Duc Luong, Dang Hoai Nhon, Pham Ngoc Can
Author affiliations

Authors

  • Le Duc Anh Institute of Earth Sciences, VAST, Hanoi, Vietnam
  • Nguyen Hoang Institute of Earth Sciences, VAST, Hanoi, Vietnam
  • Tran Thi Huong 1-Institute of Earth Sciences, VAST, Hanoi, Vietnam; 2-Hanoi University of Geology and Mining, Hanoi, Vietnam
  • Ryuichi Shinjo 1-Research Institute for Humanity and Nature (RIHN), Motoyama 457-4, Kamigamo, Kita-ku, Kyoto 603-8047, Japan; 2-Department of Physics and Earth Sciences, University of the Ryukyus, Senbaru-1, Nishihara, Okinawa 903-0213, Japan
  • Le Duc Luong Institute of Earth Sciences, VAST, Hanoi, Vietnam
  • Dang Hoai Nhon Institute of Science and Technology for Energy and Environment, VAST, Hanoi, Vietnam
  • Pham Ngoc Can Institute of Earth Sciences, VAST, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/23225

Keywords:

North Central Vietnam, monogenic volcanism, enriched mantle, lithosphere stretching, mantle heterogeneity

Abstract

Pliocene to Pleistocene monogenic basalt volcanism in North Central Vietnam is typical of the East and Southeast Asian' diffuse igneous province'. Exposed at Khe Sanh (4.5 Ma), Gio Linh (1.5–1.3 Ma), and Con Co Island (0.35 Ma) the Miocene activity marks the southeastern tip of the Red River Shear Zone (RRSZ) and appears to relate to the rifting of the Hue Sub-basin, triggered by the Song Ca-Rao Nay Fault system (SCRNFS). Petrological analysis of primitive samples suggests that their formation occurred via decompression melting of spinel peridotite mantle at temperatures of 1350–1400°C and pressures of 15–29 kbar. The basalts display oceanic island basalt (OIB)-type geochemical signatures, characterized by enrichment in radiogenic isotopes of Sr, Nd, Pb, and Hf. They are relatively high in TiO2 and K2O, and incompatible element concentrations. These suggest a fertile, spinel-peridotite source, influenced by in situ metasomatism and/or the presence of recycled subducted oceanic sediment melt. Given the lack of evidence for mantle plume activity beneath the region, we propose that North Central Vietnamese monogenic volcanism reflects decompression melting of a hotter-than-average (Tp ≈ 1400°C) mantle, triggered by lithospheric stretching (greater than 1.5) within the Red River and Hue Sub-basins. In the context of previous regional studies of east/southeast Asian Cenozoic volcanism, Dupal-like mantle affinity is ascribed to eastward asthenospheric flow from the Neo-Tethyan mantle following its closure due to the India-Eurasia collision in the Tertiary.

Downloads

Download data is not yet available.

References

Anderson D.L., 1994. The sublithospheric mantle as the source of continental flood basalts: the case against the continental lithosphere and plume head reservoirs. Earth and Planetary Science Letters, 123, 269–280.

Anderson D.L., 1995. Lithosphere, asthenosphere, and perisphere. Reviews of Geophysics, 33, 125–149.

Bui H.H., Fyhn M.B.W., Hovikoski J., Boldreel L.O., Tuan N.Q., Dam M.H., Long H.V., Tung N.T., Nielsen L.H., Abatzis I., 2023. Cenozoic structural development of the western flank of the Song Hong Basin, Gulf of Tonkin, Vietnam: Linking with onshore strike-slip faulting and regional tectonics. Journal of Asian Earth Sciences, 246, 105581. https://doi.org/10.1016/j.jseaes.2023.105581.

Castillo P.R., MacIsaac C., Perry S., Veizer J., 2018. Marine carbonates in the mantle source of oceanic basalts: Pb isotopic constraints. Scientific Reports, 8, 14932. Doi: 10.1038/s41598-018-33178-4.

Cung T.C., Dorobek S., Richter C., Flower M., Kikawa E., Nguyen Y.T., McCabe R., 1998. Paleomagnetism of late Neogene basalts in Vietnam and Thailand: Implications for the Tertiary tectonic history of Indochina. In: M.F.J. Flower, S.-l. Chung, T.-y. Lee and C.-h. Lo (Editors), Mantle Dynamics and Plate Interactions in East Asia. Am. Geophys. Union, Geodynamics Series, 27, 289–300.

Danyushevsky L.V., Plechov P., 2011. Petrolog3: Integrated software for modeling crystallization processes. Geochemistry, Geophysics, Geosystems, 12(7). Doi.org/10.1029/2011GC003516.

Davidson J., Turner S., Plank T., 2013. Dy/Dy*: Variations arising from mantle sources and petrogenetic processes. Journal of Petrology, 34(3), 525–537. Doi: 10.1093/petrology/egs076.

Flower M.F.J., Tamaki K., Hoang N., 1998. Mantle extrusion: a model for dispersed volcanism and DUPAL-like asthenosphere in East Asia and the WPAC. In: M.F.J. Flower, S.L. Chung, C.H. Lo, eds. Mantle Dynamics and Plate Interactions in East Asia. Geodynamics Series. Washington, DC: American Geophysical Union, 27, 67–88.

Flower M.F.J., Russo R.M., Tamaki K., Hoang N., 2001. Mantle contamination and the Izu-Bonin-Mariana (IBM) 'high-tide mark': evidence for mantle extrusion caused by Tethyan closure. Tectonophysics, 333, 9–34.

Frey F.A., Clague D., Mahoney J.J., Sinton J.M., 2000. Volcanism at the edge of the Hawaiian plume: petrogenesis of submarine alkalic lavas from the North Arch volcanic field. Journal of Petrology, 41(5), 667–691.

Fyhn M.B.W., Hoang B.H., Cuong T.D., Tuan N.Q., Schmidt W.J., Boldreel L.O., Anh N.T.K., Huyen N.T., Trinh X.C, 2020. Paleogene structural development of the northern Song Hong Basin and adjacent areas: Implications for the role of extrusion tectonics in basin formation in the Gulf of Tonkin. Tectonophysics, 789, 228522. https://doi.org/10.1016/j.tecto.2020.228522.

Gaetani G.A., Grove T.L., 1998. The influence of water on melting of mantle peridotite. Contrib. Miner. Petrol., 131, 323–346.

Gill J.B., 1981. Orogenic Andesite and Plate Tectonics. Springer-Verlag, New York, 330p.

Harry D.L., Leeman W.P., 1995. Partial melting of melt metasomatized subcontinental mantle and the magma source potential of the lower lithosphere. Journal of Geophysical Research, 100(B6), 10255–10269. https://doi.org/10.1029/94JB03065.

Hart S., 1984. DUPAL anomaly: a large scale isotopic anomaly in the southern hemisphere. Nature, 309, 753–756.

Hart S., 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90, 273–296.

Herzberg C., Zhang J., 1996. Melting experiments on anhydrous peridotite KLB-1: compositions of magmas in the upper mantle and transition zone. J. Geophys. Res., 101, 8271–8295.

Hirschmann M.M., Kogiso T., Baker M.B., Stolper E.M., 2003. Alkalic magmas generated by partial melting of garnetpyroxenite. Geology, 31, 481–484.

Hirose K., Kushiro I., 1993. Partial melting of dry peridotites at high pressures: determination of composition of melts segregated from peridotite using aggregate of diamond. Earth and Planetary Science Letters, 114, 477–489.

Hoang N., 2023. Miocene-Quaternary basaltic volcanism in Vietnam. Natural Science and Technology Publishing House, VAST, Hanoi, 372p.

Hoang N., Flower M.F.J., 1998. Petrogenesis of Cenozoic basalts from Vietnam: implication for origins of a 'diffuse igneous province'. Journal of Petrology, 39(3), 369–395; https://doi.org/10.1093/petroj/39.3.369.

Hoang N., Huong T.T., Shinjo R., Le D.A., Le D.L., Phan D.P., 2025. Geochemistry of late Miocene-Pleistocene basalts from a coastal area of Vietnam: Implication for small-scale mantle heterogeneities. Journal of Asian Earth Sciences, 281, 106488. https://doi.org/10.1016/j.jseaes.2025.106488.

Hoang N., Shinjo R., Huong T.T., Le D.L., Le D.A., 2021. Mantle geodynamics and source domain of the East Vietnam Sea opening-induced volcanism in Vietnam and neighboring regions. Vietnam Journal of Marine Science and Technology, 21(4), 393–417. https://doi.org/10.15625/1859-3097/16856.

Hoang N., Shinjo R., La T.P., Le D.A., Huong T.T., Zoltán Pécskay, Dao Thai Bac, 2019. Pleistocene basalt volcanism in the Krông Nô area and vicinity, Dak Nong province (Vietnam). J. Asian Earth Sciences, 181, 103903. https://doi.org/10.1016/j.jseaes.2019.103903.

Hoang N., Shinjo R., Le D.L., Huong T.T., Tran V.A., Phan D.P., Pham T.D., Cu S.T., Nguyen T.T., Le T.P.D., 2024. Pleistocene basaltic volcanism in the southeastern Ailao Shan - Red River Shear zone: Implications for the injection of metasomatized asthenospheric mantle under the region. Vietnam Journal of Earth Sciences, 47(1), 16–43. https://doi.org/10.15625/2615-9783/21539.

Hofmann A.W., 1988. Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90, 297–314.

Holm P.M., 2002. Sr, Nd and Pb isotopic composition of in situ lower crust at the Southwest Indian Ridge: results from ODP Leg 176. Chemical Geology, 184, 195–216.

Hong-Anh H.T., Choi S.H., Yu Y.-j., Pham T.H., Nguyen K.H., Ryu J.-S., 2018. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts. Vietnam. Lithos, 296–299, 382–395.

Huong T.T., Hoang N., 2018. Petrology, geochemistry, and Sr, Nd isotopes of mantle xenolith in Nghia Dan alkaline basalt (West Nghe An): implications for lithospheric mantle characteristics beaneath the region. Vietnam Journal of Earth Sciences, 40(3), 207–27. https://doi.org/10.15625/0866-7187/40/3/12614.

Ignat'ev A.V., Velivetskaya T.A., Budnitskii S.Yu., 2010. A method for determining argon isotopes in a continuous helium flow for K/Ar geochronology. Journal of Analytical Chemistry, 65, 1347–1355.

Ionov D.A., O'Reilly S.Y., Griffin W.B., 1998. A geotherm and lithospheric section for central Mongolia (Tariat region). In: M.F.J. Flower, S.-l. Chung, T.-Y. Lee and C.-H. Lo (Editors), Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Geodynamics Series, 127–153.

Jolivet L., Faccenna C., Becker T., Tesauro M., Sternai P., Bouilhol P., 2018. Mantle flow and deforming continents: From India-Asia convergence to Pacific subduction. Tectonics, 37, 2887–2914. https://doi.org/10.1029/2018TC005036.

Jones R.E., van Keken P.E., Hauri E.H., Tucker J.M., Vervoort J., Ballentine C.J., 2019. Origins of the terrestrial Hf-Nd mantle array: Evidence from a combined geodynamical-geochemical approach. Earth Planet Sci. Lett., 518, 26–39.

Kimura J.-I., Yoshida T., 2006. Contributions of slab fluid, mantle wedge and crust to the origin of Quaternary lavas in the NE Japan arc. Journal of Petrology, 47(11), 2185–2232.

Kushiro I., 1996. Partial melting of a fertile mantle peridotite at high pressure: An experimental study using aggregates of diamond. In: A. Basu and S.R. Hart (Editors), Earth Processes: Reading the Isotopic Code. Geophys. Monogr. 95, American Geophysical Union, 109–122.

Kushiro I., 1998. Compositions of partial melts formed in mantle peridotites at high pressures and their relation to those of primitive MORB. Physics of the Earth and Planetary Interiors, 107, 103–110.

Latin D., White N., 1990. Generating melt during lithospheric extension: Pure shear vs. simple shear. Geology, 18, 327–331.

Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27, 745–750. https://doi.org/10.1093/petrology/27.3.745.

Le D. Anh, Hoang N., Shakirov R., Huong T.T., 2017. Geochemistry of late miocene-pleistocene basalts in the Phu Quy island area (East Vietnam Sea): Implication for mantle source feature and melt generation. Vietnam Journal of Earth Sciences, 39(3), 270–288. https://doi.org/10.15625/0866-7187/39/3/10559.

Lee T.-Y., Lo C.-H., Chung S.-L., Chen C.-Y., Wang P.-L., Lin W.-P., Hoang N., Cung T.C., Nguyen T.Y., 1998. 40Ar/39Ar dating result of Neogene basalts in Vietnam and its tectonic implication. In: M.F.J. Flower, C-h. Lo, S-l. Chung, T. Lee (Editors) Mantle Dynamics and Plate Interactions in East Asia. AGU Monograph, 27, 317–330.

Liu D., Zhao Z., Zhu D-Ch., Niu Y., DePaolo D.J., T. Harrison M., Mo X-X., Dong G., Zhou S., Sun C., Zhang Z., Liu J., 2014. Post collisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India-Asia collision and convergence. Geochimica et Cosmochimica Acta, 143, 207–231.

Mahoney J.J, Graham D.W., Christie D.M., Johnson K.T.M., Hall S.L., Vonderhaar D.L., 2002. Between a hotspot and a cold spot: Isotopic variation in the Southeast Indian Ridge asthenosphere, 86E-118E. Journal of Petrology, 43(7), 1155–1176.

Mayle M., Harry D.L., 2023. Syn-rift magmatism and sequential melting of fertile lithologies in the lithosphere and asthenosphere. Journal of Geophysical Research: Solid Earth, 128, e2023JB027072. https://doi.org/10.1029/2023JB027072.

McDonough W.F., Sun, S.-S., 1995. The composition of the Earth. Chemical Geology, 120, 223–253.

McKenzie D., Bickle, M.J., 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 26, 625–679.

McKenzie D., Stracke A., Blichert-Toft J., Albarède F., Grönvold K., O'Nions R.K., 2004. Source enrichment processes responsible for isotopic anomalies in oceanic island basalts. Geochimica et Cosmochimica Acta, 68(12), 2699–2724.

McLennan S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2, 2000GC000109.

Modreski P.J., Boettcher A.L., 1973. Phase relationships of phlogopite in the systems K2O-MgO-CaO-Al2O3-SiO2-H2O to 35 kilobars: a better model for micas in the interior of the earth. American Journal of Science, 273, 385–414.

Neal C.R., Mahoney J.J., Chazey III W.J., 2002. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kergulen Plateau and Broken Ridge LIP: Results from ODP Leg 183. J. Petrol, 43(7), 1177–1205.

Nguyen H.H., Carter A., Hoang L.V., Fox M., Pham S.N., Vinh H.B., 2022. Evolution of the continental margin of south to central Vietnam and its relationship to opening of the East Vietnam Sea. Tectonics, 41, e2021TC006971. https://doi.org/10.1029/2021TC006971.

Nguyen N.T., Phan T.H., Bui V.N., Nguyen T.T.H., Tran T.L., 2018. Moho depth of the northern Vietnam and Gulf of Tonkin from 3D inverse interpretation of gravity anomaly data. Journal of Geophysics and Engineering, 15, 1651–1662. https://doi.org/10.1088/1742-2140/aabf48.

Nguyen N.T., Bui V.N., Nguyen T.T.H., Than D.L., 2014. Application of power density spectrum of magnetic anomaly to estimate the structure of magnetic layer of the earth crust in the Bac Bo Gulf. Vietnam Journal of Marine Science and Technology, 14(4A), 137–148. https://doi.org/10.15625/1859-3097/14/4A/6040 (in Vietnamese with English abstract).

Pham T.L., Do D.T., Oksum E., Le T.S., 2019. Estimation of Curie point depths in the Southern Vietnam continental shelf using magnetic data. Vietnam Journal of Earth Sciences, 41(3), 216–228. https://doi.org/10.15625/0866-7187/41/3/13830.

Phan T.T., Ngo V.L., Nguyen V.H., Hoang Q.V., Bui V.T., Bui P.T., Mai T.T., Hoang N., 2012. Late Quaternary tectonics and seistmotectonics along the Red River fault zone, North Vietnam. Earth-Science Reviews, 114(3–4), 224–235. https://doi:10.1016/j.earscirev.2012.06.008.

Phung V.P., Anh L.D., Hanh N.T.H., Golozubov V.V., Kasatkin S., 2023. Tectonic evolution of the Red River basin and adjacent area (Vietnam) in Cenozoic era. Vietnam Journal of Marine Science and Technology, 23(4), 345–359. https://doi.org/10.15625/1859-3097/18583.

Prytulak J., Elliot T., 2007. TiO2 enrichment in ocean island basalts. Earth Planet Sci. Lett., 263(3–4), 388–403.

Putirka K., 2008. Thermometers and Barometers for Volcanic Systems. In: Putirka, K., Tepley, F. (Eds.), Minerals, Inclusions and Volcanic Processes, Reviews in Mineralogy and Geochemistry, Mineralogical Soc. Am., 69, 61–120.

Rangin C., Klein M., Roques D., Le Pichon X., Trong L.V., 1995. The Red River fault system in the Tonkin Gulf, Vietnam. Tectonophysics, 243(3–4), 209–222.

Regelous M., Niu Y., Wendt J.I., Batiza R., Greig A., Collerson K.D., 1999. Variations in the geochemistry if magmatism on the East Pacific Rise at 10°30'N since 800 ka. Earth and Planetary Science Letters, 168, 45–63.

Richard N., Burberry C.M, Hoang N., Le D.A., Dinh Q.S., Elkins L.J., 2024. Neogene‐Recent Reactivation of Pre‐Existing Faults in South‐Central Vietnam, With Implications for the Extrusion of Indochina. Tectonics, 43, e2023TC008231. https://doi.org/10.1029/2023TC008231.

Roeder P.L., Emslie R.F., 1970. Olivine-liquid equilibria. Contributions to Mineralogy and Petrology, 29, 275–289.

Rudnick R.L., Fountain D.M., 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33(3), 267–309.

Tapponnier P., Lacassin R., Leloup P.H., Schärer U., Zhong D., Liu X., Ji S., Zhang L., Zhong J., 1990. The Ailao Shan-Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 343, 431–437.

Tapponnier P., Peltzer G., Dain A.Y., Armijo R., Cobbold P., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611–616.

Tatsumi Y., 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research, 94, 4697–4707.

Taylor S.R., McLennan S.M., 1981. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society of London, 301, 381–399.

Tenner T.J., Hirschmann M.M., Humayun M., 2012. The effect of H2O on partial melting of garnet peridotite at 3.5 GPa. Geochem. Geophys. Geosyst., 13. http://dx.doi.org/10.1029/2011GC003942 (Q03016).

Tran D.T., Le D.A., Tran D.L., Trinh T.M.T., Nguyen T.M.H., 2017. Position resources in Con Co Island. Vietnam Journal of Marine Science and Technology, 17(1), 12–22 (in Vietnamese with English abstract). Doi: 10.15625/1859-3097/17/1/8406.

Tu K., Flower M.F.J., Carlson R.W., Xie G., Chen C.-Y., Zhang M., 1992. Magmatism in the South China Basin: 1. Isotopic and trace-element evidence for an endogenous Dupal mantle component. Chemical Geology, 97(1–2), 47–63. http://dx.doi.org/10.1016/0009-2541(92)90135-R.

Turner S., Hawkesworth C., 1995. The nature of the sub-continental mantle: constraints from the major element composition of continental flood basalts. Chemical Geology, 120, 295–314.

White W.M., Hofmann A.W., Puchelt H., 1987. Isotope geochemistry of Pacific mid-ocean ridge basalt. Journal of Geophysical Research, 92(B6), 4881–4893.

Wilson M., 1993. Magmatism and the geodynamics of basin formation. Sedimentary Geology, 86, 5–29.

Yamashita S., Tatsumi Y., 1994. Thermal and geochemical evolution of the mantle wedge in the northeast Japan arc. 2. Contribution from geochemistry. Journal of Geophysical Research, 99(B11), 22285–22293. https://doi.org/10.1029/94JB00282.

Yan Q-S., Shi X., Metcalfe I., Liu S., Xu T., Kornkanitnan N., Sirichaiseth, Yuan L., Zhang Y., Zhang H., 2018. Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia. Scientific Report. Doi: 10.1038/s41598-018- 20712-7.

Yu C., Shi X., Yang X., Zhao J., Chen M., Tang Q., 2017. Deep thermal structure of Southeast Asia constrained by S-velocity data. Marine Geophys. Res., 38, 341–355. Doi: 10.1007/s11001-017-9311-x.

Zhang Y-S., Tanimoto T., 1993. High-resolution global upper mantle structure and plate tectonics. Journal of Geophysical Research, 98, 9793–9823.

Downloads

Published

25-07-2025

How to Cite

Le Duc, A., Nguyen, H., Tran Thi, H., Shinjo, R., Le Duc, L., Dang Hoai, N., & Pham Ngoc, C. (2025). Recent monogenic volcanism in North Central Vietnam: Implications for the regional mantle geodynamics. Vietnam Journal of Earth Sciences, 47(3), 355–375. https://doi.org/10.15625/2615-9783/23225

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 45 46 47 48 49 50 51 52 53 54 > >> 

You may also start an advanced similarity search for this article.