Automated dense-layer architecture search on EfficientNet: A hybrid approach for scene-based land-cover classification

Le-Tuan Pham, Bui Vu Vinh, Van-Manh Pham, Nguyen Thi Lan Anh, Quoc-Huy Nguyen, Huu Duy Nguyen, Quang-Thanh Bui
Author affiliations

Authors

  • Le-Tuan Pham VNU University of Science, Vietnam National University, Hanoi, Vietnam
  • Bui Vu Vinh Department of Science and Technology, Khanh Hoa province
  • Van-Manh Pham VNU University of Science, Vietnam National University, Hanoi, Vietnam
  • Nguyen Thi Lan Anh
  • Quoc-Huy Nguyen Hanoi Architectural University
  • Huu Duy Nguyen VNU University of Science, Vietnam National University, Hanoi, Vietnam
  • Quang-Thanh Bui VNU University of Science, Vietnam National University, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/23402

Keywords:

Land cover, efficient network, metaheuristic optimization

Abstract

This article proposes a land cover classification framework based on EfficientNet-B4, a model from the EfficientNet family of convolutional neural networks developed by Google AI. EfficientNet models have been widely applied in various domains, including image classification, object detection, and medical imaging, due to their scalability and efficiency.  EfficientNet-B4 and its pretrained weights were used for feature extractions, and the dense layer structure (number of layers, nodes, and dropout rates) was tuned using meta-heuristic optimisation algorithms. The model is trained and validated on the Sentinel-2 EuroSAT benchmark, which comprises 27,000 RGB (Red-Green-Blue) image tiles spanning 10 land-cover classes across Europe. The results show that this proposed model achieves an overall classification accuracy of 0.9881 for RGB images, which is higher than that of previous networks using similar datasets. This hybrid approach can be considered as an alternative solution to search for neural architectures for different applications.

Downloads

Download data is not yet available.

References

Adegun A.A., Viriri S., Tapamo J.-R., 2023. Review of deep learning methods for remote sensing satellite images classification: experimental survey and comparative analysis. Journal of Big Data, 10, 93. Doi: 10.1186/s40537-023-00772-x.

Ahmad M., Abdullah M., Moon H., Yoo S.J., Han D., 2020. Image Classification Based on Automatic Neural Architecture Search Using Binary Crow Search Algorithm. IEEE Access, 8, 189891–189912. Doi: 10.1109/access.2020.3031599.

Alhichri H., Alswayed A.S., Bazi Y., Ammour N., Alajlan N.A., 2021. Classification of Remote Sensing Images Using EfficientNet-B3 CNN Model With Attention. IEEE Access, 9, 14078–14094. Doi: 10.1109/access.2021.3051085.

Alzubaidi L., Zhang J., Humaidi A.J., Al-Dujaili A., Duan Y., Al-Shamma O., Santamaría J., Fadhel M.A., Al-Amidie M., Farhan L., 2021. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8, 53. Doi: 10.1186/s40537-021-00444-8.

Bui Q.-T., Chou T.-Y., Hoang T.-V., Fang Y.-M., Mu C.-Y., Huang P.-H., Pham V.-D., Nguyen Q.-H., Anh D.T., Pham V.-M., Meadows M.E., 2021. Gradient Boosting Machine and Object-Based CNN for Land Cover Classification. Remote Sensing, 13(14), 2709. https://doi.org/10.3390/rs13142709.

Bui Q.-T., Pham Van M., Hang N.T.T., Nguyen Q.-H., Linh N.X., Hai P.M., Tuan T.A., Van Cu P., 2018. Hybrid model to optimize object-based land cover classification by meta-heuristic algorithm: an example for supporting urban management in Ha Noi, Viet Nam. International Journal of Digital Earth, 1–15. Doi: 10.1080/17538947.2018.1542039.

Challapalli J.R., Devarakonda N., 2022. A novel approach for optimization of convolution neural network with hybrid particle swarm and grey wolf algorithm for classification of Indian classical dances. Knowl Inf Syst, 64, 2411–2434. Doi: 10.1007/s10115-022-01707-3.

Dang Vu K., Ta Duc H., Ngo Thi Hai Y., Nguyen Khac A., Pham Thanh H., Weber C., 2025. Observation of coal mining activities in Ha Long and Cam Pha cities, Quang Ninh province, Vietnam using Sentinel-2 data. Vietnam Journal of Earth Sciences, 47(2), 272–289. Doi: 10.15625/2615-9783/23010.

Devikanniga D., Vetrivel K., Badrinath N., 2019. Review of Meta-Heuristic Optimization based Artificial Neural Networks and its Applications. Journal of Physics: Conference Series, 1362. Doi: 10.1088/1742-6596/1362/1/012074.

Dinh D.N., Vinh C.L., 2021. 30-year changes of natural forests under human activities in the Indochina peninsula-case studies in Cambodia, Laos and Vietnam. Vietnam J. of Earth Sciences, 43(3), 285–300. https://doi.org/10.15625/2615-9783/16196.

Ga̧sienica-Józkowy J., Knapik M., Cyganek B., 2021. An ensemble deep learning method with optimized weights for drone-based water rescue and surveillance. Integrated Computer-Aided Engineering, 28, 221–235. Doi: 10.3233/ICA-210649.

Guo B., Hu J., Wu W., Peng Q., Wu F., 2019. The Tabu_Genetic Algorithm: A Novel Method for Hyper-Parameter Optimization of Learning Algorithms. Electronics, 8. Doi: 10.3390/electronics8050579.

Hoang V.T., Jo K.H., 2021. Practical Analysis on Architecture of EfficientNet. 2021 14th International Conference on Human System Interaction (HSI), 1–4.

Hu X., Yuan Y., 2016. Deep-Learning-Based Classification for DTM Extraction from ALS Point Cloud. Remote Sensing, 8. Doi: 10.3390/rs8090730.

Kashevnik A., Ali A., 2022. 3D Vehicle Detection and Segmentation Based on EfficientNetB3 and CenterNet Residual Blocks. Sensors, 8(9), 730. https://doi.org/10.3390/rs8090730.

Kaveh M., Mesgari M.S., 2022. Application of Meta-Heuristic Algorithms for Training Neural Networks and Deep Learning Architectures: A Comprehensive Review. Neural Process Lett, 1–104. Doi: 10.1007/s11063-022-11055-6.

Ma L., Liu Y., Zhang X., Ye Y., Yin G., Johnson B.A., 2019. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166–177. https://doi.org/10.1016/j.isprsjprs.2019.04.015.

Marcos D., Volpi M., Kellenberger B., Tuia D., 2018. Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 96–107. https://doi.org/10.1016/j.isprsjprs.2018.01.021.

Mohajerani S., Saeedi P., 2021. Cloud and Cloud Shadow Segmentation for Remote Sensing Imagery Via Filtered Jaccard Loss Function

and Parametric Augmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 4254–4266. Doi: 10.1109/JSTARS.2021.3070786.

Muazu A.A., Hashim A.S., Sarlan A., 2022. Review of Nature Inspired Metaheuristic Algorithm Selection for Combinatorial t-Way Testing. IEEE Access, 10, 27404–27431. Doi: 10.1109/access.2022.3157400.

Muhammad K., Ahmad J., Baik S.W., 2018. Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing, 288, 30–42. https://doi.org/10.1016/j.neucom.2017.04.083.

Nadeem M.I., Ahmed K., Li D., Zheng Z., Naheed H., Muaad A.Y., Alqarafi A., Abdel Hameed H., 2023. SHO-CNN: A Metaheuristic Optimization of a Convolutional Neural Network for Multi-Label News Classification. Electronics, 12(1), 113. https://doi.org/10.3390/electronics12010113.

Naushad R., Kaur T., Ghaderpour E., 2021. Deep Transfer Learning for Land Use and Land Cover Classification: A Comparative Study. Sensors (Basel), 21(23), 8083. https://doi.org/10.3390/s21238083.

Nguyen Thanh H., Ho Le T., Nguyen Van D., Hoa Thuy Q., Nguyen Kim A., Le Duc H., Pham Van D., Phan Trong T., Tran Van P., 2025. Forest cover change mapping based on Deep Neuron Network, GIS, and High-resolution Imagery. Vietnam Journal of Earth Sciences, 47(2), 157–181. Doi: 10.15625/2615-9783/22192.

Nikparvar B., Thill J.-C., 2021. Machine Learning of Spatial Data. ISPRS International Journal of Geo-Information, 10(9), 600. https://doi.org/10.3390/ijgi10090600.

Pham V.-D., Bui Q.-T., 2021. Spatial resolution enhancement method for Landsat imagery using a Generative Adversarial Network. Remote Sensing Letters, 12, 654–665. Doi: 10.1080/2150704X.2021.1918789.

Priyanka P., Kumar D., 2020. Meta-Heuristic Optimization Based Convolutional Neural Network for Medical Image Classification: A Survey. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), 752–756.

Punuri S.B., Kuanar S.K., Kolhar M., Mishra T.K., Alameen A., Mohapatra H., Mishra S.R., 2023. Efficient Net-XGBoost: An Implementation for Facial Emotion Recognition Using Transfer Learning. Mathematics, 11(3), 776. https://doi.org/10.3390/math11030776.

Rere L.M.R., Fanany M.I., Arymurthy A.M., 2016. Metaheuristic Algorithms for Convolution Neural Network. Comput Intell Neurosci, 1537325–1537325. Doi: 10.1155/2016/1537325.

Sarker I.H., 2021. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Computer Science, 2, 420. Doi: 10.1007/s42979-021-00815-1.

Scarpa G., Gargiulo M., Mazza A., Gaetano R., 2018. A CNN-Based Fusion Method for Feature Extraction from Sentinel Data. Remote Sensing, 10(2), 236. https://doi.org/10.3390/rs10020236.

Srivastava S., Vargas-Muñoz J.E., Tuia D., 2019. Understanding urban landuse from the above and ground perspectives: A deep learning, multimodal solution. Remote Sensing of Environment, 228, 129–143. https://doi.org/10.1016/j.rse.2019.04.014.

Sumbul G., Charfuelan M., Demir B., Markl V., 2019. Bigearthnet: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding. IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, 5901–5904.

Tan M., Le Q.V., 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv e-prints:arXiv:1905.11946. Doi: 10.48550/arXiv.1905.11946.

Tsagkatakis G., Aidini A., Fotiadou K., Giannopoulos M., Pentari A., Tsakalides P., 2019. Survey of Deep-Learning Approaches for Remote Sensing Observation Enhancement. Sensors, 19(18), 3929. https://doi.org/10.3390/s19183929.

Tuna C., Unal G., Sertel E., 2018. Single-frame super resolution of remote-sensing images by convolutional neural networks. International Journal of Remote Sensing, 39, 2463–2479. Doi: 10.1080/01431161.2018.1425561.

Dang Vu K., Ta Duc H., Ngo Thi Hai Y., Nguyen Khac A., Pham Thanh H., Weber C., 2025. Observation of coal mining activities in Ha Long and Cam Pha cities, Quang Ninh province, Vietnam using Sentinel-2 data. Vietnam Journal of Earth Sciences, 47(2), 272–289. https://doi.org/10.15625/2615-9783/23010.

Wang H., Wang Y., Zhang Q., Xiang S., Pan C., 2017. Gated Convolutional Neural Network for Semantic Segmentation in High-Resolution Images. Remote Sensing, 9(5), 446. https://doi.org/10.3390/rs9050446.

Wang Y., Fang Z., Hong H., 2019. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Science of the Total Environment, 666, 975–993. https://doi.org/10.1016/j.scitotenv.2019.02.263.

Weir N., Lindenbaum D., Bastidas A., Etten A., Kumar V., Mcpherson S., Shermeyer J., Tang H., 2019. SpaceNet MVOI: A Multi-View Overhead Imagery Dataset. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 992–1001.

Zhao S., Zhang T., Ma S., Wang M., 2023. Seahorse optimizer: a novel nature-inspired meta-heuristic for global optimization problems. Applied Intelligence, 53, 11833–11860.

Zhou W., Newsam S., Li C., Shao Z., 2017. Learning Low Dimensional Convolutional Neural Networks for High-Resolution Remote Sensing Image Retrieval. Remote Sensing, 9(5), 489. https://doi.org/10.3390/rs9050489.

Downloads

Published

05-09-2025

How to Cite

Tuan Pham, L.-., Vu Vinh, B., Manh Pham, V.-., Thi Lan Anh, N., Huy Nguyen, Q.-., Huu Duy, N., & Thanh Bui, Q.-. (2025). Automated dense-layer architecture search on EfficientNet: A hybrid approach for scene-based land-cover classification. Vietnam Journal of Earth Sciences, 47(3), 396–410. https://doi.org/10.15625/2615-9783/23402

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.