The potential of microalgae for wastewater nutrient removal combined with polyhydroxybutyrate (PHB) production

Thi Oanh Doan, Thi Thuy Duong, Le Anh Pham, Thi Thu Hang Hoang, Thanh Trung Nguyen, Thi Mai Vu, Thi Phuong Thao Nguyen, Thi Hong Hanh Nguyen, Thi Ngoc Quynh Chu
Author affiliations

Authors

  • Thi Oanh Doan Faculty of Environment, Hanoi University of Natural Resources and Environment, Hanoi, Vietnam
  • Thi Thuy Duong 1-Faculty of Environment, Hanoi University of Natural Resources and Environment, Hanoi, Vietnam; 2-Institute of Science and Technology for Energy and Environment, VAST, Hanoi, Vietnam
  • Le Anh Pham University of Science and Technology of Hanoi, VAST, Hanoi, Vietnam
  • Thi Thu Hang Hoang Institute of Science and Technology for Energy and Environment, VAST, Hanoi, Vietnam
  • Thanh Trung Nguyen Faculty of Environment, Hanoi University of Natural Resources and Environment, Hanoi, Vietnam
  • Thi Mai Vu Faculty of Environment, Hanoi University of Natural Resources and Environment, Hanoi, Vietnam
  • Thi Phuong Thao Nguyen Faculty of Environment, Hanoi University of Natural Resources and Environment, Hanoi, Vietnam
  • Thi Hong Hanh Nguyen Faculty of Environment, Hanoi University of Natural Resources and Environment, Hanoi, Vietnam
  • Thi Ngoc Quynh Chu Institute of Science and Technology for Energy and Environment, VAST, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/23664

Keywords:

Microalgae, domestic wastewater, polyhydroxybutyrate, nutrient removal

Abstract

Poor management of domestic wastewater and dependence on synthetic plastics have been placing a heavy burden on the natural environment, endangering both the ecosystem and human well-being. Microalgae technology has demonstrated enormous potential in simultaneously addressing both problems through wastewater remediation and nutrient recovery, while also facilitating the production of bioplastics. This study evaluated the growth performance, polyhydroxybutyrate (PHB) production, and the ability of four microalgae strains, including Scenedesmus sp., to treat domestic wastewater. SCE, Chlorella sp. HB, Chlorella sp. CNK, and Chlorella sp. CNA, cultivated in the standard artificial medium (Blue Green-11 - BG11), the standard artificial medium (BG11) with sodium acetate, and the real domestic wastewater, and aerated at an aeration rate of 1.2 v v-1 m-1  for 10 hours/day, at temperature 25°C, light intensity of 5 klux, a light: dark cycle of 10 hours: 14 hours for 12 test days. After 12 experimental days, the study results demonstrated that four microalgae achieved their highest biomass productivities and PHB contents in domestic wastewater, ranging between 7.0±0.4 and 25.7±0.5 mg L-1 d-1, and between 6.3±0.2 and 13.0±0.3% by weight, respectively. The addition of organic carbon (sodium acetate) to the standard medium could increase the growth and PHB accumulation capacity of microalgae, particularly in their mixotrophic growth. The microalgae also demonstrated good adaptability in domestic wastewater, achieving high efficiencies, with COD removal ranging from 53.6±4.7 to 78.1±1.1%, TN removal from 56.6±2.6 to 84.5±1.5%, and TP removal from 43.2±11.0 to 70.0±4.2%. Notably, the removal of nitrogen and phosphorus was primarily due to the assimilation of microalgae, further confirming their potential in nutrient recovery from wastewater. The two microalgae that performed the best were Scenedesmus sp. SCE and Chlorella sp. HB, with the estimated PHB productivities of 2.5±0.1 and 3.3±0.1 mg L-1 d-1, respectively. Future studies should focus on optimizing operational conditions to enhance performance, particularly in larger-scale cultivation systems.

 

Downloads

Download data is not yet available.

References

Abdelfattah A., Ali S.S., Ramadan H., El-Aswar E.I., Eltawab R., Ho S.-H., Elsamahy T., Li S., El-Sheekh M.M., Schagerl M., Kornaros M., Sun J., 2023. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environmental Science and Ecotechnology, 13, 100205. https://doi.org/10.1016/j.ese.2022.100205.

Ali S.S., Abdelkarim E.A., Elsamahy T., Al-Tohamy R., Li F., Kornaros M., Zuorro A., Zhu D., Sun J., 2023. Bioplastic production in terms of life cycle assessment: A state-of-the-art review. Environmental Science and Ecotechnology, 15, 100254. https://doi.org/10.1016/j.ese.2023.100254.

Álvarez-González A., Greque de Morais E., Planas-Carbonell A., Uggetti E., 2023. Enhancing sustainability through microalgae cultivation in urban wastewater for biostimulant production and nutrient recovery. Science of The
Total Environment, 904, 166878. https://doi.org/10.1016/j.scitotenv.2023.166878.

Amadu A.A., Qiu S., Ge S., Addico G.N.D., Ameka G.K., Yu Z., Xia W., Abbew A.-W., Shao D., Champagne P., Wang S., 2021. A review of biopolymer (Poly-β-hydroxybutyrate) synthesis in microbes cultivated on wastewater. Science of The Total Environment, 756, 143729. https://doi.org/10.1016/j.scitotenv.2020.143729.

Amorim M.L., Soares J., Vieira B.B., Leite M. de O., Rocha D.N., Aleixo P.E., Falconí J.H.H., Xavier Júnior M. de L., Albino L.F.T., Martins M.A., 2021. Pilot-scale biorefining of Scenedesmus obliquus for the production of lipids and proteins. Separation and Purification Technology, 270, 118775. https://doi.org/10.1016/j.seppur.2021.118775.

Ansari S., Fatma T., 2016. Cyanobacterial Polyhydroxybutyrate (PHB): Screening, Optimization and Characterization. Plos One, 11, e0158168. https://doi.org/10.1371/journal.pone.0158168.

Arias D.M., García J., Uggetti E., 2020. Production of polymers by cyanobacteria grown in wastewater: Current status, challenges and future perspectives. New Biotechnology, 55, 46–57. https://doi.org/10.1016/j.nbt.2019.09.001.

Arora Y., Sharma S., Sharma V., 2023. Microalgae in Bioplastic Production: A Comprehensive Review. Arab J. Sci. Eng., 48, 7225–7241. https://doi.org/10.1007/s13369-023-07871-0.

Balan L., Mohandas S.P., Priyaja P., Gopi J., Cubelio S.S., Philip R., Bright Singh I.S., 2025. Development of a mini repository of marine bacteria having the potential of Polyhydroxyalkanoates production. The Microbe, 7, 100338. https://doi.org/10.1016/j.microb.2025.100338.

Behera S., Priyadarshanee M., Vandana, Das S., 2022. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications. Chemosphere, 294, 133723. https://doi.org/10.1016/j.chemosphere.2022.133723.

Borges A.V. dos S., Andrade B.B., Santana J.S., de Almeida Medeiros R.M., de Souza C.O., de Jesus Assis D., da Silva J.B.A., Tavares P.P.L.G., Cardoso L.G., 2024. Biopolymers synthesized by microalgae grown in wastewater: a
technological survey. Bioenerg., Res., 17, 73–86. https://doi.org/10.1007/s12155-023-10680-w.

Chavan R., Mutnuri S., 2018. Tertiary treatment of domestic wastewater by Spirulina platensis integrated with microalgal biorefinery. Biofuels, 10, 33–44. https://doi.org/10.1080/17597269.2018.1461509.

Chong J.W.R., Tan X., Khoo K.S., Ng H.S., Jonglertjunya W., Yew G.Y., Show P.L., 2022. Microalgae-based bioplastics: Future solution towards mitigation of plastic wastes. Environmental Research, 206, 112620. https://doi.org/10.1016/j.envres.2021.112620.

Dammak I., Fersi M., Hachicha R., Abdelkafi S., 2023. Current insights into growing microalgae for municipal wastewater treatment and biomass generation. resources, 12, 119. https://doi.org/10.3390/resources12100119.

Dinh N.T., Thu L.P., Dat N.T., Toan N.K., Anh P.L., 2022. The roles of microalgae and bacteria in wastewater treatment. Vietnam Journal of Biotechnology, 20, 573–588. https://doi.org/10.15625/1811-4989/16645.

Doan T.O., Duong T.T., Nguyen T.M., Hoang T.Q., Luong T.T., Pham P.T., Cao T.T.N., Le P.T., Phung H.P.H., Le T.P.Q., Dang T.M.A., Bui P.T., Duong T.N., Bui V.C., 2023. Preliminary results on microplastic pollution from agricultural soil in Vietnam: Distribution, characterization, and ecological risk assessment. Vietnam Journal of Earth Sciences, 45(4), 405–418. https://doi.org/10.15625/2615-9783/18616.

Doan T.O., Thi T.D., Nhu H.N.T., Thi Q.H., Phuong Q.L.T., Hong P.D., Phuong T.L., Huyen T.B., 2021. Preliminary results on microplastics in surface water from the downstream of the Day River. Vietnam Journal of Earth Sciences, 43(4), 485–495. https://doi.org/10.15625/2615-9783/16504.

Duangsri C., Mudtham N.-A., Incharoensakdi A., Raksajit W., 2020. Enhanced polyhydroxybutyrate (PHB) accumulation in heterotrophically grown Arthrospira platensis under nitrogen deprivation. J. Appl Phycol, 32, 3645–3654. https://doi.org/10.1007/s10811-020-02272-4.

Fae Neto W.A., Dosselli R., Kennington W.J., Tomkins J.L., 2023. Correlated responses to selection for different cell size in Chlamydomonas reinhardtii using divergent evolutionary pathways. J. Appl Phycol, 35, 1621–1634. https://doi.org/10.1007/s10811-023-02978-1.

Franchino M., Tigini V., Varese G.C., Mussat Sartor R., Bona F., 2016. Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate. Science of The Total Environment, 569–570, 40–45. https://doi.org/10.1016/j.scitotenv.2016.06.100.

Garcia J.M., Robertson M.L., 2017. The future of plastics recycling. Science, 358, 870–872. https://doi.org/10.1126/science.aaq0324.

Garfí M., Flores L., Ferrer I., 2017. Life Cycle Assessment of wastewater treatment systems for small communities: Activated sludge, constructed wetlands and high rate algal ponds. Journal of Cleaner Production, 161, 211–219. https://doi.org/10.1016/j.jclepro.2017.05.116.

Geyer R., Jambeck J.R., Law K.L., 2017. Production, use, and fate of all plastics ever made. Science Advances, 3, e1700782. https://doi.org/10.1126/sciadv.1700782.

Grivalský T., Lakatos G.E., Štěrbová K., Manoel J.A.C., Beloša R., Divoká P., Kopp J., Kriechbaum R., Spadiut O., Zwirzitz A., Trenzinger K., Masojídek J., 2024. Poly-β-hydroxybutyrate production by Synechocystis MT_a24 in a raceway pond using urban wastewater. Appl Microbiol Biotechnol, 108, 44. https://doi.org/10.1007/s00253-023-12924-3.

Hassan H., Ansari F.A., Rawat I., Bux F., 2024. Drying strategies for maximizing polyhydroxybutyrate recovery from microalgae cultivated in a raceway pond: A comparative study. Environmental Pollution, 361, 124821. https://doi.org/10.1016/j.envpol.2024.124821.

Hernández-Núñez E., Martínez-Gutiérrez C.A., López-Cortés A., Aguirre-Macedo Ma. L., Tabasco-Novelo C., González Díaz M.O., García-Maldonado J.Q., 2019. Physico-chemical Characterization of Poly (3-Hydroxybutyrate) Produced by Halomonas salina, Isolated from a Hypersaline Microbial Mat. J. Polym Environ, 27, 1105–1111. https://doi.org/10.1007/s10924-019-01417-y.

Jiang L., Zhang L., Nie C., Pei H., 2018. Lipid productivity in limnetic Chlorella is doubled by seawater added with anaerobically digested effluent from kitchen waste. Biotechnol Biofuels, 11, 68. https://doi.org/10.1186/s13068-018-1064-5.

Jones E.R., van Vliet M.T.H., Qadir M., Bierkens M.F.P., 2021. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth System Science Data, 13, 237–254. https://doi.org/10.5194/essd-13-237-2021.

Kavitha G., Kurinjimalar C., Sivakumar K., Palani P., Rengasamy R., 2016. Biosynthesis, purification and characterization of polyhydroxybutyrate from Botryococcus braunii kütz. International Journal of Biological Macromolecules, 89, 700–706. https://doi.org/10.1016/j.ijbiomac.2016.04.086.

Krasaesueb N., Incharoensakdi A., Khetkorn W., 2019. Utilization of shrimp wastewater for poly-β-hydroxybutyrate production by Synechocystis sp. PCC 6803 strain ΔSphU cultivated in photobioreactor. Biotechnology Reports, 23, e00345. https://doi.org/10.1016/j.btre.2019.e00345.

Kumari P., Ravi Kiran B., Venkata Mohan S., 2022. Polyhydroxybutyrate production by Chlorella sorokiniana SVMIICT8 under nutrient-deprived mixotrophy. Bioresource Technology, 354, 127135. https://doi.org/10.1016/j.biortech.2022.127135.

Larsen T.A., Hoffmann S., Lüthi C., Truffer B., Maurer M., 2016. Emerging solutions to the water challenges of an urbanizing world. Science, 352, 928–933. https://doi.org/10.1126/science.aad8641.

Le N.D., Hoang T.T.H., Duong T.T., Phuong N.N., Le P.T., Nguyen T.D., Phung T.X.B., Le T.M.H., Le T.L., Vu T.H., Le T.P.Q., 2023. Microplastics in the surface sediment of the main Red river estuary. Vietnam Journal of Earth Sciences, 45(1), 19–32. https://doi.org/10.15625/2615-9783/17486.

Lee J.-C., Joo J.-H., Chun B.H., Moon K., Song S.H., Kim Y.J., Lee S.M., Lee A.H., 2022. Isolation and screening of indigenous microalgae species for domestic and livestock wastewater treatment, biodiesel production, and carbon sequestration. Journal of Environmental Management, 318, 115648. https://doi.org/10.1016/j.jenvman.2022.115648.

Levett I., Birkett G., Davies N., Bell A., Langford A., Laycock B., Lant P., Pratt S., 2016. Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane-The case for thermophilic bioprocessing. Journal of Environmental Chemical Engineering, 4, 3724–3733. https://doi.org/10.1016/j.jece.2016.07.033.

Llamas B., Suárez-Rodríguez M.C., González-López C.V., Mora P., Acién F.G., 2021. Techno-economic analysis of microalgae related processes for CO2 bio-fixation. Algal Research, 57, 102339. https://doi.org/10.1016/j.algal.2021.102339.

López-Pacheco I.Y., Rodas-Zuluaga L.I., Cuellar-Bermudez S.P., Hidalgo-Vázquez E., Molina-Vazquez A., Araújo R.G., Martínez-Ruiz M., Varjani S., Barceló D., Iqbal H.M.N., Parra-Saldívar R., 2022. Revalorization of microalgae biomass for synergistic interaction and sustainable applications: Bioplastic generation. Marine Drugs, 20, 601. https://doi.org/10.3390/md20100601.

Mariotto M., Egloff S., Fritz I., Refardt D., 2023. Cultivation of the PHB-producing cyanobacterium Synechococcus leopoliensis in a pilot-scale open system using nitrogen from waste streams. Algal Research, 70, 103013. https://doi.org/10.1016/j.algal.2023.103013.

Mastropetros S.G., Pispas K., Zagklis D., Ali S.S., Kornaros M., 2022. Biopolymers production from microalgae and cyanobacteria cultivated in wastewater: Recent advances. Biotechnology Advances, 60, 107999. https://doi.org/10.1016/j.biotechadv.2022.107999.

Mata T.M., Martins A.A., Caetano Nidia S., 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217–232. https://doi.org/10.1016/j.rser.2009.07.020.

Meixner K., Fritz I., Daffert C., Markl K., Fuchs W., Drosg B., 2016. Processing recommendations for using low-solids digestate as nutrient solution for poly-ß-hydroxybutyrate production with Synechocystis salina. Journal of Biotechnology, 240, 61–67. https://doi.org/10.1016/j.jbiotec.2016.10.023.

Mourão M.M., Gradíssimo D.G., Santos A.V., Schneider M.P.C., Faustino S.M.M., Vasconcelos V., Xavier L.P., 2020. Optimization of Polyhydroxybutyrate production by Amazonian microalga Stigeoclonium sp. B23. Biomolecules, 10, 1628. https://doi.org/10.3390/biom10121628.

Nam P.N., Pham Q.T., Ngo T.X.T., Nguyen T.M.D., Duong T.T., Le T.P.Q., Le N.D., Phuong N.A., Duong T.N., Le Q.T., 2022. Initial survey on microplastic waste in coastal water in Nam Dinh. Vietnam Journal of Marine
Science and Technology, 22(2), 209–216. https://doi.org/10.15625/1859-3097/16544.

Nam P.N., Tuan P.Q., Thuy D.T., Quynh L.T.P., Amiard F., 2019. Contamination of microplastic in bivalve: first evaluation in Vietnam. Vietnam Journal of Earth Sciences, 41(3), 252–258. https://doi.org/10.15625/0866-7187/41/3/13925.

Narala R.R., Garg S., Sharma K.K., Thomas-Hall S.R., Deme M., Li Y., Schenk P.M., 2016. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front. Energy Res.,
4. https://doi.org/10.3389/fenrg.2016.00029.

Nguyen T.H., Nguyen T.H.T., Tran T.T., Trinh T.M.T., Pham T.D., Duong T.L., Nguyen V.C., Nguyen T.L.H., Nguyen Q.B., Duong C.D., Dang T.Q., 2025. Microplastic contamination in filter-feeding bivalves inhabiting the natural ecosystem of Da Nang Bay: An investigation of oysters (Ostrea rivularis) and green mussels (Perna viridis). Vietnam Journal of Marine Science and Technology, 25(3), 331–340. https://doi.org/10.15625/1859-3097/21566.

Pacheco D., Rocha A.C., Pereira L., Verdelhos T., 2020. Microalgae water bioremediation: Trends and hot topics. Applied Sciences, 10, 1886. https://doi.org/10.3390/app10051886.

Parthiban J., Jambulingam R., 2023. Enhancing the biodiesel production potential of Synechococcus elongatus and Anabaena cyanobacterial strain isolated from saline water using different media composition and organic carbon sources. Sustainability, 15, 870. https://doi.org/10.3390/su15010870.

Pham A.L., Luu K.D., Duong T.T., Dinh T.M.T., Nguyen S.Q., Nguyen T.K., Duong H.C., Le Q.P.T., Le T.P., 2022. Evaluation of microalgal bacterial dynamics in pig-farming biogas digestate under impacts of light intensity and nutrient using physicochemical parameters. Water, 14, 2275. https://doi.org/10.3390/w14142275.

Pham L.A., Laurent J., Bois P., Teshome T.M., Wanko A., 2021. Operating a semi-continuous raceway pond allows to link pH and oxygen dynamics to the interaction between microalgae and bacteria. DWT, 211, 105–116. https://doi.org/10.5004/dwt.2021.26506.

Pham T.T.H., Nguyen T.L.A., Duong T.T., Doan O.T., Tran H.T.T., Tran L.T.T., 2024. Selection of microalgae and cyanobacteria to produce polyhydroxyalkanoates (PHAs) - A case study in Vietnam. Case Studies in Chemical and Environmental Engineering, 10, 100808. https://doi.org/10.1016/j.cscee.2024.100808.

Pratap B., Kumar S., Nand S., Azad I., Bharagava R.N., Romanholo Ferreira L.F., Dutta V., 2023. Wastewater generation and treatment by various eco-friendly technologies: Possible health hazards and further reuse for environmental safety. Chemosphere, 313, 137547. https://doi.org/10.1016/j.chemosphere.2022.137547.

Price S., Kuzhiumparambil U., Pernice M., Ralph P.J., 2020. Cyanobacterial polyhydroxybutyrate for sustainable bioplastic production: Critical review and perspectives. Journal of Environmental Chemical Engineering, 8, 104007. https://doi.org/10.1016/j.jece.2020.104007.

Qadir M., Drechsel P., Jones E.R., 2025. Domestic wastewater treatment and agricultural reuse progress and reporting challenges. Discov Water, 5, 74. https://doi.org/10.1007/s43832-025-00244-8.

Rana M.S., Prajapati S.K., 2021. Stimulating effects of glycerol on the growth, phycoremediation and biofuel potential of Chlorella pyrenoidosa cultivated in wastewater. Environmental Technology & Innovation, 24, 102082. https://doi.org/10.1016/j.eti.2021.102082.

Rueda E., García-Galán M.J., Ortiz A., Uggetti E., Carretero J., García J., Díez-Montero R., 2020. Bioremediation of agricultural runoff and biopolymers production from cyanobacteria cultured in demonstrative full-scale photobioreactors. Process Safety and Environmental Protection, 139, 241–250. https://doi.org/10.1016/j.psep.2020.03.035.

Rueda E., Gonzalez-Flo E., Roca L., Carretero J., García J., 2022. Accumulation of polyhydroxybutyrate in Synechocystis sp. isolated from wastewaters: Effect of salinity, light, and P content in the biomass. Journal of Environmental Chemical Engineering, 10, 107952. https://doi.org/10.1016/j.jece.2022.107952.

Ryberg M.W., Hauschild M.Z., Wang F., Averous-Monnery S., Laurent A., 2019. Global environmental losses of plastics across their value chains. Resources, Conservation and Recycling, 151, 104459. https://doi.org/10.1016/j.resconrec.2019.104459.

Samadhiya K., Ghosh A., Nogueira R., Bala K., 2022. Newly isolated native microalgal strains producing polyhydroxybutyrate and energy storage precursors simultaneously: Targeting microalgal biorefinery. Algal Research, 62, 102625. https://doi.org/10.1016/j.algal.2021.102625.

Saratale R.G., Cho S.-K., Bharagava R.N., Patel A.K., Vivekanand V., Bhatia S.K., Ferreira L.F.R., Shin H.S., Awasthi M.K., Chakrabortty S., Kumar R., Saratale G.D., 2024. Third-generation biomass for bioplastics: a comprehensive review of microalgae-driven polyhydroxyalkanoate production. Biofuel Research Journal, 11, 2256–2282. https://doi.org/10.18331/BRJ2024.11.4.5.

Sátiro J., dos Santos Neto A., Tavares J., Marinho I., Magnus B., Kato M., Albuquerque A., Florencio L., 2025. Impact of inoculum on domestic wastewater treatment in high-rate ponds in pilot-scale: Assessment of organic matter and nutrients removal, biomass growth, and content. Algal Research, 86, 103923. https://doi.org/10.1016/j.algal.2025.103923.

Shanmuganathan R., Le Q.H., Aloufi A.S., Gavurová B., Deepak J.R., Mosisa E., R P.T., 2023. High efficiency lipid production, biochar yield and chlorophyll a content of Chlorella sp. microalgae exposed on sea water and TiO2 nanoparticles. Environmental Research, 232, 116263. https://doi.org/10.1016/j.envres.2023.116263.

Sharma A.K., Sahoo P.K., Singhal S., Patel A., 2016. Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech, 6, 116. https://doi.org/10.1007/s13205-016-0434-6.

Shu Q., Qin L., Yuan Z., Zhu S., Xu J., Xu Z., Feng P., Wang Z., 2018. Comparison of dairy wastewater and synthetic medium for biofuels production by microalgae cultivation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.

Sooksawat T., Attapong M., Saengsakun W., Siripornadulsil S., Siripornadulsil W., 2023. Optimization of polyhydroxybutyrate (PHB) production by Priestia megaterium ASL11 and glycerol and thermoplastic properties of PHB-based films. Biocatalysis and Agricultural Biotechnology, 54, 102951. https://doi.org/10.1016/j.bcab.2023.102951.

Strokal M., Bai Z., Franssen W., Hofstra N., Koelmans A.A., Ludwig F., Ma L., van Puijenbroek P., Spanier J.E., Vermeulen L.C., van Vliet M.T.H., van Wijnen J., Kroeze C., 2021. Urbanization: an increasing source of multiple pollutants to rivers in the 21st century. npj Urban Sustain, 1, 24. https://doi.org/10.1038/s42949-021-00026-w.

Sventzouri E., Pispas K., Kournoutou G.G., Geroulia M., Giakoumatou E., Ali S.S., Kornaros M., 2025. Evaluation of growth performance, biochemical composition, and polyhydroxyalkanoates production of four cyanobacterial species grown in cheese whey. Microorganisms, 13, 1157. https://doi.org/10.3390/microorganisms13051157.

United Nations, 2018. SDG 6 Synthesis report 2018 on water and sanitation. United Nations, Geneva, Switzerland. https://doi.org/10.18356/e8fc060b-en.

United Nations, D. of E. and S.A., 2019. World urbanization prospects: The 2018 Revision. United Nations. https://doi.org/10.18356/b9e995fe-en.

United Nations, D. of E. and S.A., 2024. World population prospects 2024: summary of results. United Nations. https://doi.org/10.18356/9789211065138.

Verma R., Vinoda K.S., Papireddy M., Gowda A.N.S., 2016. Toxic pollutants from plastic waste- a review. Procedia Environmental Sciences, Waste Management for Resource Utilisation, 35, 701–708. https://doi.org/10.1016/j.proenv.2016.07.069.

Wang K., Hobby A.M., Chen Y., Chio A., Jenkins B.M., Zhang R., 2022. Techno-economic analysis on an industrial-scale production system of polyhydroxyalkanoates (pha) from cheese by-products by Halophiles. Processes, 10, 17. https://doi.org/10.3390/pr10010017.

Wang Q., Wang X., Hong Y., Liu X., Zhao G., Zhang H., Zhai Q., 2022. Microalgae cultivation in domestic wastewater for wastewater treatment and high value-added production: Species selection and comparison. Biochemical Engineering Journal, 185, 108493. https://doi.org/10.1016/j.bej.2022.108493.

Wicker R.J., Autio H., Daneshvar E., Sarkar B., Bolan N., Kumar V., Bhatnagar A., 2022. The effects of light regime on carbon cycling, nutrient removal, biomass yield, and polyhydroxybutyrate (PHB) production by a constructed photosynthetic consortium. Bioresource Technology, 363, 127912. https://doi.org/10.1016/j.biortech.2022.127912.

Xin L., Hong-ying H., Ke G., Ying-xue S., 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101, 5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016.

Yashavanth P.R., Meenakshi Das, Soumen K. Maiti., 2021. Recent progress and challenges in cyanobacterial autotrophic production of polyhydroxybutyrate (PHB), a bioplastic. Journal of Environmental Chemical Engineering, 9, 105379. https://doi.org/10.1016/j.jece.2021.105379.

Zhila N.O., Kiselev E.G., Shishatskaya E.I., Ghorabe F.D.E., Kazachenko A.S., Volova T.G., 2025. Comparative study of the synthesis of polyhydroxyalkanoates by cyanobacteria Spirulina platensis and green microalga Chlorella vulgaris. Algal Research, 85, 103826. https://doi.org/10.1016/j.algal.2024.103826.

Downloads

Published

22-10-2025

How to Cite

Oanh Doan, T., Thuy Duong, T., Anh Pham, L., Hang Hoang, T. T., Trung Nguyen, T., Mai Vu, T., … Quynh Chu, T. N. (2025). The potential of microalgae for wastewater nutrient removal combined with polyhydroxybutyrate (PHB) production. Vietnam Journal of Earth Sciences. https://doi.org/10.15625/2615-9783/23664

Issue

Section

Articles

Most read articles by the same author(s)