Spatiotemporal analysis of sea surface temperature and chlorophyll-a variability under ENSO-IOD influence in the Southern Madura Strait, Indonesia

Amir Yarkhasy Yuliardi, Gandhi Napitupulu, Herlambang Aulia Rachman, Harmon Prayogi, Marita Ika Joesidawati, Viv Djanat Prasita
Author affiliations

Authors

  • Amir Yarkhasy Yuliardi Faculty of Fisheries and Marine Science, Universitas Jenderal Soedirman, Purwokerto, 53122, Indonesia
  • Gandhi Napitupulu 1-Faculty of Earth Science and Technology, Bandung Institute of Technology, Cirebon, 45162, Indonesia; 2-Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Bandung, 40132, Indonesia
  • Herlambang Aulia Rachman Faculty of Agriculture, University of Trunojoyo Madura, Bangkalan, 69162, Indonesia
  • Harmon Prayogi Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya, 60231, Indonesia
  • Marita Ika Joesidawati Faculty of Fisheries and Marine, Universitas PGRI Ronggolawe, Tuban, 62391, Indonesia
  • Viv Djanat Prasita Faculty of Engineering and Marine Science, Universitas Hang Tuah, Surabaya, 60111, Indonesia

DOI:

https://doi.org/10.15625/2615-9783/23665

Keywords:

El Niño southern oscillation, Indian ocean dipole, Sea surface chlorophyll-a, Sea surface temperature, Southern Madura strait

Abstract

A dynamic interplay between local oceanographic processes and large-scale climate drivers shapes tropical coastal ecosystems. Yet, their coupled responses remain poorly quantified in many regions of the Indonesian Maritime Continent. This study examines the spatiotemporal variability of sea surface temperature (SST) and chlorophyll-a concentrations in the southern Madura Strait, utilizing 15 years (2010–2024) of monthly MODIS-Aqua observations, in conjunction with Niño 3.4 and Dipole Mode Index (DMI) time series to characterize ENSO and IOD phases. Monthly climatologies revealed a pronounced SST annual cycle, with peak warming during December-February (DJF) and March-May (MAM) (±31°C) and basin-wide cooling during June-August (JJA, ±28°C). Chlorophyll-a exhibited strong spatial heterogeneity, with the highest biomass (>10 mg/m³) consistently observed in the western sector during DJF and MAM, likely reflecting monsoon-driven circulation and terrestrial nutrient inputs. Composite analyses revealed that La Niña and negative IOD phases increased productivity through surface cooling and nutrient enrichment. In contrast, El Niño and positive IOD phases resulted in compound warming events that suppressed chlorophyll-a. Lagged correlation analyses further revealed that chlorophyll-a responses typically lag climate anomalies by one to two months, underscoring the temporally asynchronous nature of climate-ecosystem interactions. These results provide new process-based insights into how ENSO-IOD interactions regulate tropical coastal productivity, highlighting the importance of incorporating climate drivers and temporal lags into forecasting and adaptive fisheries management frameworks to maintain ecosystem resilience under future climate variability.

Downloads

Download data is not yet available.

References

Abreu P.C., Bergesch M., Proença L.A., Garcia C.A., Odebrecht C., 2010. Short-and long-term chlorophyll a variability in the shallow microtidal Patos Lagoon estuary, Southern Brazil. Estuaries and Coasts, 33, 554–569. Doi: 10.1007/s12237-009-9181-9.

Agung A., Zainuri M., Wirasatriya A., Maslukah L., Subardjo P., Suryosaputro A.A.D., Handoyo G., 2018. Analysis of the distribution of chlorophyll-a and sea surface temperature as potential fishing grounds (small pelagic fish) in Kendal waters, Central Java. Buletin Oseanografi Marina, 7(2), 67–74. Doi: 0.14710/buloma.v7i2.20378 (in Bahasa).

Akbar M.A., Sosaidi D.S., Napitupulu G., Tahir A.A.R., 2024. Response of upwelling parameter before, during, and after tropical cyclone (Case Study: Tropical Cyclone Marcus). Jurnal Meteorologi dan Geofisika, 25(1), 25–33. Doi: 10.31172/jmg.v25i1.1071.

Andriani R., Sari S.H.J., Yuniarti A., IkHarlyan L., Pranowo W.S., Fuad M.A.Z., Sartimbul A., 2024. Analysis of Water Temperature Variations in the Madura Strait Waters in 2013-2020 Using Data from Marine Copernicus. Techno-Fish, 114–125. Doi: 10.25139/tf.vi.8699 (in Bahasa).

Atmadipoera A.S., Natih N.M.N., Nugroho D., Zuraida R., Hartanto M.T., Syahdan M., 2024. Water mass exchange in triangle seas of the Java-Makassar-Flores (JMF): A modeling study. Continental Shelf Research, 275, 105225. Doi: 10.1016/j.csr.2024.105225.

Atmadipoera A.S., Nugroho D., Jaya I., Akhir M.F., 2023. Simulated seasonal oceanographic changes and their implication for the small pelagic fisheries in the Java Sea, Indonesia. Marine Environmental Research, 188, 106012. Doi: 10.1016/j.marenvres.2023.106012.

Capotondi A., et al., 2019. Observational needs supporting marine ecosystems modeling and forecasting: from the global ocean to regional and coastal systems. Frontiers in Marine Science, 6, 623. https://Doi.org/10.3389/fmars.2019.00623.

Cui T.W., Zhang J., Wang K., Wei J.W., Mu B., Ma Y., Zhu J.H., Liu R.J., and Chen X.Y., 2020. Remote Sensing of Chlorophyll a Concentration in Turbid Coastal Waters Based on a Global Optical Water Classification System. ISPRS Journal of Photogrammetry and Remote Sensing, 163, 187–201. Doi: 10.1016/j.isprsjprs.2020.02.017.

Darmawan A., Herawati E.Y., Azkiya M., Cahyani R.N., Aryani S.H., Hardiyanti C.A., Dwiyanti R.S.M., 2021. Seasonal monitoring of chlorophyll-a with landsat 8 oli in the madura strait, pasuruan, East Java, Indonesia. Geography, Environment, Sustainability, 14(2), 22–29. Doi: 10.24057/2071-9388-2020-199.

Donato D.C., Kauffman J.B., Murdiyarso D., Kurnianto S., Stidham M., Kanninen M., 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293–297. Doi: 10.1038/ngeo1123.

Duarte C.M., Regaudie-de-Gioux A., Arrieta J.M., Delgado-Huertas A., Agustí S., 2013. The oligotrophic ocean is heterotrophic. Annual Review of Marine Science, 5(1), 551–569. Doi: 10.1146/annurev-marine-121211-172337.

Elko N., et al., 2022. Human and ecosystem health in coastal systems. Shore Beach, 90, 28. Doi: 10.34237/1009018.

Espinoza‐Morriberón D., Mogollón R., Velasquez O., Yabar G., Villena M., Tam J., 2025. Dynamics of Surface Chlorophyll and the Asymmetric Response of the High Productive Zone in the Peruvian Sea: Effects of El Niño and La Niña. International Journal of Climatology, e8764. Doi: 0.1002/joc.8764.

Dewi Y.W., Wirasatriya A., Sugianto D.N., Helmi M., Marwoto J., Maslukah L., 2020. Effect of ENSO and IOD on the variability of sea surface temperature (SST) in java sea. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 530(1), 012007. Doi: 10.1088/1755-1315/530/1/012007.

Fauzan A., Sutanto R., Zaini A., 2023. Empowerment of Ujung-Kamal Sea Crossing Transportation as a Maritime Defense Strategy in the Madura Strait. Jurnal Kewarganegaraan, 7(1), 1186–1194. Doi: 10.31316/jk.v7i1.5258 (in Bahasa).

Fernández-González C., Tarran G.A., Schuback N., Woodward E.M.S., Arístegui J., Marañón E., 2022. Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic. Communications Biology, 5(1), 1035. Doi: 10.1038/s42003-022-03971-z.

Gao Y., Xie H., Yao T., Xue C., 2010. Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA. Remote Sensing of Environment, 114(8), 1662–1675. Doi: 10.1016/j.rse.2010.02.017.

Gramacki A., 2018. Kernel Density Estimation. In: Nonparametric Kernel Density Estimation and Its Computational Aspects. Studies in Big Data. Springer, Cham, 37. Doi: 10.1007/978-3-319-71688-6_3.

Häder D.P., Villafane V.E., Helbling E.W., 2014. Productivity of aquatic primary producers under global climate change. Photochemical & Photobiological Sciences, 13(10), 1370–1392. Doi: 10.1039/C3PP50418B.

Hanansyah M.P., Handoko E.Y., Muryono M., 2024. Spatio-temporal Variation of Chlorophyll-a around the Flores Sea, Java Sea, and Makassar Strait and its Relationship with Temperature and Salinity. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 1418(1), 012036. Doi: 10.1088/1755-1315/1418/1/012036.

Harshada D., Raman M., Jayappa K.S., 2021. Evaluation of the operational Chlorophyll-a product from global ocean colour sensors in the coastal waters, south-eastern Arabian Sea. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 769–786. Doi: 10.1016/j.ejrs.2021.09.005.

Haryanto Y.D., Riama N.F., Agdialta R., Hartoko A., 2021. Sea Surface Temperature (SST) analysis during ElNiño-LaNiña in the Java Sea. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 716(1), 012006. Doi: 10.1088/1755-1315/716/1/012006.

Hidayah G., Wulandari S.Y., Zainuri M., 2016. Study of Horizontal Distribution of Chlorophyll-a in the Waters of the Silugonggo River Estuary, Batangan District, Pati. Buletin Oseanografi Marina, 5(1), 52–59. https://Doi.org/10.14710/buloma.v5i1.11296 (in Bahasa).

Hidayah Z., Wiyanto D.B., 2021. Geographic Information System Modeling for Mapping the Suitability of Madura Strait Waters and Coastal Areas. Rekayasa, 14(1), 17–25. Doi: 10.21107/rekayasa.v14i1.9987 (in Bahasa).

Hidayah Z., Nuzula N.I., Wiyanto D.B., 2020. Analysis of the sustainability of fisheries resource management in the Madura Strait waters of East Java. Jurnal Perikanan Universitas Gadjah Mada, 22(2), 101–111. Doi: 10.22146/jfs.53099 (in Bahasa).

Holbrook N.J., et al., 2020. ENSO‐driven ocean extremes and their ecosystem impacts. El Niño southern oscillation in a changing climate, 409–428. Doi: 10.1002/9781119548164.ch18.

Hu Q., Chen X., He X., Bai Y., Gong F., Zhu Q., Pan D., 2021. Effect of El Niño‐related warming on Phytoplankton's vertical distribution in the Arabian Sea. Journal of Geophysical Research: Oceans, 126(11), e2021JC017882. Doi: 10.1029/2021JC017882.

Ismunarti D.H., Rifa'i A., Munandar B., Wirasatriya A., Susanto R.D., 2023. Effect of Extreme ENSO and IOD on the Variability of Chlorophyll-a and Sea Surface Temperature in the North and South of Central Java Province. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 28(1). Doi: 10.14710/ik.ijms.28.1.1-11.

Jaelani L.M., Limehuwey R., Kurniadin N., Pamungkas A., Koenhardono E.S., Sulisetyono A., 2016. Estimation of TSS and Chl-a Concentration from Landsat 8-OLI: The Effect of Atmosphere and Retrieval Algoritm. IPTEK, The Journal for Technology and Science, 27(1), 16–23. Doi: 10.12962/j20882033.v27i1.1217.

Karima S., Ningsih N.S., Tisiana A.R., Napitupulu G., 2025. Water Mass Vertical Mixing in The Sulawesi Sea and Makassar Strait During the Second Transition Monsoon. Earth and Planetary Science, 4(1), 73–88. Doi: 10.36956/eps.v4i1.2061.

Khadami F., Suprijo T., Hidayat A.R., Radjawane I.M., Tarya A., Napitupulu G., 2025. Near-bed flow dynamics and bed shear stress in a mangrove-vegetated estuary. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 1464(1), 012014. Doi: 10.1088/1755-1315/1464/1/012014.

Kottek M., Grieser J., Beck C., Rudolf B., Rubel F., 2006. World map of the Köppen-Geiger climate classification updated. Doi: 10.1127/0941-2948/2006/0130.

Kurniadi A., Weller E., Min S.K., Seong M.G., 2021. Independent ENSO and IOD impacts on rainfall extremes over Indonesia. International Journal of Climatology, 41(6), 3640–3656. Doi: 10.1002/joc.7040.

Lehodey P., et al., 2020. ENSO impact on marine fisheries and ecosystems. El Niño Southern Oscillation in a changing climate, 429–451. https://doi.org/10.1002/9781119548164.ch19.

Liu C., Zipser E.J., 2005. Global distribution of convection penetrating the tropical tropopause. Journal of Geophysical Research: Atmospheres, 110(D23). Doi: 10.1029/2005JD006063.

Liu J., Deng J., Tang X., 2024. Reduction of thermal stratification due to global warming in winter and spring. Journal of Oceanology and Limnology, 1–15. Doi: 10.1007/s00343-024-4010-3.

Mandal S., Susanto R.D., Ramakrishnan B, 2022. On investigating the dynamical factors modulating surface chlorophyll-a variability along the south Java coast. Remote Sensing, 14(7), 1745. Doi: 10.3390/rs14071745.

Maulana M.A., Soemitro R.A.A., Mukunoki T., 2016. Assessment to the sediment concentration affected by river water current during dry and monsoon seasons at Kanor village-Bengawan Solo River. Japanese Geotechnical Society Special Publication, 2(72), 2484–2487. Doi: 10.3208/jgssp.INA-02.

Muhsoni F.F., Efendy M., Triajie H., 2009. Mapping of fishing ground locations and fisheries utilization status in the Madura Strait waters. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 6(1), 50–64. Doi: 10.20527/flux.v6i1.3049 (in Bahasa).

Muskananfola M.R., Wirasatriya A., 2021. Spatio-temporal distribution of chlorophyll-a concentration, sea surface temperature and wind speed using aqua-modis satellite imagery over the Savu Sea, Indonesia. Remote Sensing Applications: Society and Environment, 22, 100483. Doi: 10.1016/j.rsase.2021.100483.

Napitupulu G., 2025a. Spatiotemporal variability of coastal upwelling in response to monsoonal forcing and semi-enclosed basins in the indonesian and adjacent seas. Ocean Dynamics, 75(7), 1–20. Doi: 10.1007/s10236-025-01706-2.

Napitupulu G., 2025b. Eddy-induced modulation of marine heatwaves and cold spells in a tropical region: a case study in the natuna sea area. Ocean Dynamics, 75(3), 28. Doi: 10.1007/s10236-025-01673-8.

Napitupulu G., 2025c. Influence of mesoscale eddies on marine cold spells and heatwaves in Arafura Sea. Marine Systems & Ocean Technology, 20(4), 44. Doi: 10.1007/s40868-025-00189-6.

Napitupulu G., 2024. Monthly variability of wind-induced upwelling and its impact on chlorophyll-a distribution in the Southern and Northern parts of the Indonesian Archipelago. Ocean Dynamics, 74(10), 859–878. Doi: 10.1007/s10236-024-01640-9.

Napitupulu G., et al., 2025. Impact of marine heatwaves and cold spells on coral reef ecosystem in a tropical region: a case study of Lombok Waters, Indonesia. Marine Systems & Ocean Technology, 20(1), 16. Doi: 10.1007/s40868-024-00160-x.

Neto J.L.R., Fragoso C.R., Malhado A.C., Ladle R.J., 2015. Spatio-temporal variability of chlorophyll-a in the coastal zone of northeastern Brazil. Estuaries and Coasts, 38, 72–83. Doi: 10.1007/s12237-014-9809-2.

Ningsih N.S., Rakhmaputeri N., Harto A.B., 2013. Upwelling variability along the southern coast of Bali and in Nusa Tenggara waters. Ocean Science Journal, 48, 49–57. Doi: 10.1007/s12601-013-0004-3.

Osland M.J., et al., 2022. The impacts of mangrove range expansion on wetland ecosystem services in the southeastern United States: Current understanding, knowledge gaps, and emerging research needs. Global Change Biology, 28(10), 3163–3187. Doi: 10.1111/gcb.16111.

Poddar S., Chacko N., Swain D., 2019. Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI andentinel-2 MSI Sensors. Frontiers in Marine Science, 598(6), 1–11. Doi: 10.3389/fmars.2019.00598.

Purba N.P., Pranowo W.S., Ndah A.B., Nanlohy P., 2021. Seasonal variability of temperature, salinity, and surface currents at 0 latitude section of Indonesia seas. Regional Studies in Marine Science, 44, 101772. Doi: 10.1016/j.rsma.2021.101772.

Purba N., Akhir M., Faid G., Roseli N., Sinaga I., Faizal I., 2025. Stratified Ocean Chlorophyll-a and Nutrient Availability in the Eastern Tropical Indian Ocean during La Nina 2022-2023. Egyptian Journal of Aquatic Biology and Fisheries, 29(1), 297–320. Doi: 10.21608/ejabf.2025.404325.

Rachman H.A., Hidayah Z., Yuliardi A.Y., 2025. Dynamics of Sea Surface Temperature and Chlorophyll-a Concentration in Flores Sea Waters in Relation to ENSO and IOD Phenomena. Jurnal Kelautan Tropis, 28(1), 53–62. Doi: 10.14710/jkt.v28i1.25779 (in Bahasa).

Rachman H.A., et al., 2024. Dynamic of upwelling variability in southern Indonesia region revealed from satellite data: Role of ENSO and IOD. Journal of Sea Research, 202, 102543. Doi: 10.1016/j.seares.2024.102543.

Radjawane I.M., Saleh E., Napitupulu G., Abdillah M.R., Hassan M.A.M., 2024. Seasonal Variability of Sea Surface Chlorophyll-a at West Borneo Island. The Indonesian Journal of Geography, 56(1), 70–81. Doi: 10.22146/ijg.87713.

Reddy S., 2019. Four types of coastal habitats and why they matter. Mangroves, seagrass, salt marshes, and coral reefs sustain ocean life and help mitigate climate change. https://www.pewtrusts.org/en/research-and-analysis/articles/2019/05/31/four-types-of-coastal-habitats-and-why-they-matter.

Rizqi A.A., Ismunarti D.H., Maslukah L., 2024. Relationship of Chlorophyll-A to Environmental Parameters in Morodemak, Central Java. Journal of Marine Research, 13(4), 713–720. Doi: 10.14710/jmr.v13i4.41159 (in Bahasa).

Sambah A.B., Wijaya A., Iranawati F., Hidayati N., 2021. Impact of ENSO and IOD on chlorophyll-a concentration and sea surface temperature in the Bali Strait. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 674(1), 012083. Doi: 10.1088/1755-1315/674/1/012083.

Sarma V.V.S.S., Paul Y.S., Vani D.G., Murty V.S.N., 2015. Impact of river discharge on the coastal water pH and pCO2 levels during the Indian Ocean Dipole (IOD) years in the western Bay of Bengal. Continental Shelf Research, 107, 132–140. Doi: 10.1016/j.csr.2015.07.015.

Schmidt J.O., et al., 2019. Future ocean observations to connect climate, fisheries and marine ecosystems. Frontiers in Marine Science, 550(6). https://doi.org/10.3389/fmars.2019.00550.

Semedi B., Safitri N., 2015. Estimation of Chlorophyll-A Distribution in Madura Strait Waters Using Modis Satellite Imagery Data and In Situ Measurements During the East Season. Research Journal of Life Science, 2(1), 40–49. Doi: 10.21776/ub.rjls.2015.002.01.6 (in Bahasa).

Seprianto A., Kunarso K., Wirasatriya A., 2016. Study of the influence of El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on the variability of sea surface temperature and chlorophyll-a in Karimunjawa waters. Journal of Oceanography, 5(4), 452–461. https://ejournal3.undip.ac.id/index.php/joce/article/view/16089 (in Bahasa).

Simanjuntak F., Lin T.H., 2022. Monsoon effects on chlorophyll-a, sea surface temperature, and ekman dynamics variability along the southern coast of lesser Sunda islands and its relation to ENSO and IOD based on satellite observations. Remote Sensing, 14(7), 1682. Doi: 0.3390/rs14071682.

Siswanto E., Horii T., Iskandar I., Gaol J.L., Setiawan R.Y., Susanto R.D., 2020. Impacts of climate changes on the phytoplankton biomass of the Indonesian Maritime Continent. Journal of Marine Systems, 212, 103451. Doi: 10.1016/j.jmarsys.2020.103451.

Somavilla R., González‐Pola C., Fernández‐Diaz J., 2017. The warmer the ocean surface, the shallower the mixed layer. H ow much of this is true?. Journal of Geophysical Research: Oceans, 122(9), 7698–7716. Doi: 10.1002/2017JC013125.

Sudradjat A., Muntalif B.S., Marasabessy N., Mulyadi F., Firdaus M.I., 2024. Relationship between chlorophyll-a, rainfall, and climate phenomena in tropical archipelagic estuarine waters. Heliyon, 10(4). Doi: 10.1016/j.heliyon.2024.e25812.

Taufiqurrahman E., Ismail M.F.A., 2020. Distribution of Chlorophyll-a Associated with Eddy Circulation in the Strait of Madura. OLDI, 5(2), 93–103. Doi: 10.14203/2020-v5i2-308 (in Bahasa).

Toding J.E., Widagdo S., Bintoro R.S., 2022. Variability of Sea Surface Temperature, Salinity, and Rainfall During the El Niño-Southern Oscillation (ENSO) Period in the Madura Strait Waters. Jurnal Riset Kelautan Tropis (Journal of Tropical Marine Research)(J-Tropimar), 4(1), 52–66. Doi: 10.30649/jrkt.v4i1.60 (in Bahasa).

Trinugroho T., Satriadi A., Muslim M., 2019. Distribution of Seasonal Thermal Front in Madura Strait Waters using Single Image Edge Detection. Journal of Marine Research, 8(4), 416–423. Doi: 10.14710/jmr.v8i4.24815.

Watanabe F., Alcantara E., Rodrigues T., Rotta L., Bernardo N., Imai N., 2018. Remote Sensing of the Chlorophyll-a based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir, Brazil). Anais da Academia Brasileira de Ciências, 90(2), 1987–2000. Doi: 10.1590/0001-3765201720170125.

Wirasatriya A., Susanto R.D., Kunarso K., Jalil A.R., Ramdani F., Puryajati A.D., 2021. Northwest monsoon upwelling within the Indonesian seas. International Journal of Remote Sensing, 42(14), 5433–5454. Doi: 0.1080/01431161.2021.1918790.

Xiong X., et al., 2023. Aqua MODIS: 20 years of on-orbit calibration and performance. Journal of Applied Remote Sensing, 17(3), 037501–037501. Doi: 10.1117/1.JRS.17.037501.

Xu T.F., et al., 2021. Observed water exchange between the South China Sea (Easst Sea) and Java Sea through Karimata Strait. Journal of Geophysical Research: Oceans, 126, e2020JC016608. https://doi.org/10.1029/2020JC016608.

Yuliardi A.Y., Prayogo L.M., Joesidawati M.I., 2022. Dynamics of the Spatial-Vertical Distribution of Water Masses in the West and East Indonesian Throughflow Routes in the Wet Season. Jurnal Miyang: Ronggolawe Fisheries and Marine Science Journal, 2(2), 38–46. Doi: 10.55719/jmiy.v2i2.532 (in Bahasa).

Yuliardi A.Y., Rahman H.A., Sari R.J., Rahmalia D.A., Nugroho A.T., Prayogo L.M., 2024. Analysis of Seasonal Variations of Temperature, Salinity, and Surface Currents in Madura Waters. Indonesian Journal of Oceanography, 6(4), 292–305. Doi: 10.14710/ijoce.v6i4.24477 (in Bahasa).

Zainab S., Handajani N., Wibisana H., 2020. Mapping of Sea Surface Temperature and its Correlation with Salinity Concentration in The Coastal Beach of Bangkalan Madura District. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 506(1), 012050. Doi: 10.1088/1755-1315/506/1/012050.

Zhang Y., Wu Z., Liu M., He J., Shi K., Wang M., Yu Z., 2014. Thermal structure and response to long‐term climatic changes in Lake Qiandaohu, a deep subtropical reservoir in China. Limnology and Oceanography, 59(4), 1193–1202. Doi: 10.4319/lo.2014.59.4.1193.

Downloads

Published

23-10-2025

How to Cite

Yarkhasy Yuliardi, A., Napitupulu, G., Aulia Rachman, H., Prayogi, H., Ika Joesidawati, M., & Djanat Prasita, V. (2025). Spatiotemporal analysis of sea surface temperature and chlorophyll-a variability under ENSO-IOD influence in the Southern Madura Strait, Indonesia . Vietnam Journal of Earth Sciences. https://doi.org/10.15625/2615-9783/23665

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.