

Cyclic dipeptide, furan, furanone, and butenolide derivatives from marine-derived fungus *Aspergillus* sp. HL24

Ninh Thi Ngoc¹, Le Thi Vien¹, Pham Thi Cham¹, Tran Thi Hong Hanh^{1,*}, Ninh Khac Thanh Tung^{1,2}, Do Thi Thao³, Nguyen Xuan Cuong^{1,**}, Nguyen Hoai Nam¹

¹*Institute of Chemistry, VAST, Vietnam*

²*College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea*

³*Institute of Biology, VAST, Vietnam*

Received: 06 September 2025; Accepted: 24 October 2025

ABSTRACT

Using various chromatographic experiments, one cyclic dipeptide (1), one furan (2), one pyranone (3) and two butenolide (4 and 5) derivatives were isolated from the marine-derived fungus *Aspergillus* sp. HL24. Their chemical structures were elucidated on the basis of detailed analysis of the 1D (¹H NMR and ¹³C NMR) and 2D (HSQC and HMBC) NMR spectroscopic data in comparison with the literature values. The cytotoxic activities of compounds 1–5 were evaluated on two human cancer cell lines as Hep-G2 (liver) and A549 (lung). However, these compounds did not show significant cytotoxicity ($IC_{50} > 100 \mu\text{M}$) against both cell lines.

Keywords: *Aspergillus*, marine-derived fungus, cytotoxic activity.

*/** Corresponding author at: Institute of Chemistry, No. 18 Hoang Quoc Viet Street, Nghia Do Ward, Hanoi City, Vietnam. E-mail addresses: tranhonghanh@ich.vast.vn/cuongnx@ich.vast.vn

<https://doi.org/10.15625/1859-3097/23413>

Introduction

Bioactive compounds derived from marine microorganisms, especially those belonging to the genus *Aspergillus*, have attracted significant scientific interest in recent years [1, 2]. Marine-derived *Aspergillus* fungal strains have been found to produce a wide variety of metabolites, including polyketides, sterols, alkaloids, terpenoids, peptides, and butenolides, exhibiting notable biological activities such as antimicrobial, cytotoxic, insecticidal, neuroprotective, and antioxidant effects [3].

Within the framework of the authors' studies on the chemical composition and biological activities of marine-derived fungal strains belonging to the genus *Aspergillus* [4, 5], we have reported the isolation, structural elucidation, and cytotoxic evaluation of three new and five known compounds from the soft coral-derived fungus *Aspergillus* sp. HL24 [6]. Previously, the cytotoxic aromatic butenolide aspernolide A and lipodepsipeptide scopularide I have been isolated from the soft coral-derived fungi *Aspergillus terreus* [7] and *A. sclerotiorum* [8], respectively. In the current paper, the authors report one cyclo dipeptide, one furan, one pyranone, and two butenolide derivatives from the fungus *Aspergillus* sp. HL24. In addition, their cytotoxic effect on two human cancer cell lines as Hep-G2 (liver) and A549 (lung) was also evaluated.

Materials and methods

Fungal material

The fungal strain HL24 was isolated from an unidentified soft coral collected in Halong Bay, Quang Ninh, Vietnam. It was taxonomically identified as *Aspergillus* sp. (GenBank accession number: PV206771) and its preserved at the Institute of Chemistry (code: *Aspergillus* sp. IMBC.HL24.1), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam.

General experiment procedures

Optical rotations were determined on a JASCO P-2000 polarimeter (Jasco Inc., Japan).

Thin-layer chromatography (TLC) was performed using precoated silica gel 60 F_{254} (Merck) and RP-18 F_{254S} plates (Merck). Compounds were detected by spraying with aqueous 10% H_2SO_4 , followed by heating for 3–5 minutes. Column chromatography (CC) was carried out using silica gel (Kieselgel 60, 70–230 mesh and 230–400 mesh, Merck) and reversed-phase silica gel (ODS-A, 12 nm, S-150 μ m, YMC Co., Ltd.). An Agilent 1260 infinity II system (Agilent Tech., USA) equipped with a diode array detector (G7115A) and a YMC J'sphere ODS-H18 column (250 \times 20 mm, S-04 μ m, 8 nm) was used for preparative HPLC to isolate and purify compounds.

Fermentation, extraction and isolation

The EtOAc extract (20g) was obtained from the fermentation of the fungal strain *Aspergillus* sp. HL24, following the procedure outlined in the previous article [5]. This extract was separated on an RP-18 CC using a MeOH/H₂O gradient elution system (from 20% to 100% MeOH), yielding six fractions (E1–E6). Fraction E2 (1.2 g) was subjected to RP-18 CC with a MeOH/H₂O (2:1, v/v) eluent to obtain four subfractions, E2A–E2D. Subfraction E2D (400 mg) was further separated on a silica gel CC with CH₂Cl₂/MeOH (40:1, v/v) as the eluent, producing seven subfractions (E2D1–E2D7). Subfraction E2D1 (150 mg) was purified by HPLC using ACN/H₂O (30:70, v/v) as the eluent to afford compound **1** (8 mg). Similarly, subfraction E2D3 (48 mg) was purified by HPLC using an ACN/H₂O (30:70, v/v) eluent to yield compound **3** (20 mg). Fraction E2D5 (55 mg) was purified by HPLC with ACN/H₂O (25:75, v/v) to obtain compound **2** (8 mg).

Fraction E3 (1.7 g) was further separated on an RP-18 CC with MeOH/H₂O (2:1, v/v) as the eluent, resulting in two subfractions, E3A and E3B. Subfraction E3A (400 mg) was further subjected to silica gel CC with CH₂Cl₂/MeOH (20:1, v/v) to yield three subfractions, E3A1–E3A3. Subfraction E3A3 (150 mg) was purified by HPLC using ACN/H₂O (45:55, v/v) as the eluent to afford compound **5** (12 mg). Fraction E3B (730 mg) was further separated on a silica gel CC with CH₂Cl₂/MeOH (20:1, v/v) as the eluent to give five subfractions, E3B1–E3B5. Subfraction E3B3 (350 mg) was purified by

HPLC with ACN/H₂O (30:70, v/v) to obtain compound **4** (14 mg).

Cyclo-(S-Pro-R-Leu) (1): White powder; C₁₁H₁₈N₂O₂, M= 210; [α]_D²⁵ -65.1 (c 0.1, MeOH); ¹H-NMR (600 MHz, CD₃OD): δ_H 3.53 (2H, m, H-3), 1.96 (1H, m, H_a-4), 2.05 (1H, m, H_b-4), 2.05 (1H, m, H_a-5), 2.32 (1H, m, H_b-5), 4.27 (1H, m, H-6), 4.14 (1H, m, H-9), 1.55 (1H, m, H_a-10), 1.95 (1H, m, H_b-10), 1.90 (1H, m, H-11), 0.99 (3H, d, J = 6.6 Hz, H-12), and 0.98 (3H, d, J = 6.6 Hz, H-13); ¹³C-NMR (150 MHz, CD₃OD) see Table 1.

Acetyl Sumiki's acid (2): White powder; C₈H₈O₅, M= 184; ¹H-NMR (600 MHz, CD₃OD): δ_H 7.10 (1H, d, J = 3.0 Hz, H-3), 6.57 (1H, d, J = 3.0 Hz, H-4), 5.12 (2H, s, H-6) và 2.08 (3H, s, H-8); ¹³C-NMR (150 MHz, CD₃OD) see Table 1.

(7*R*)-(hydroxy(phenyl)methyl)-4*H*-pyran-4-one (3): White powder; C₁₂H₁₀O₃, M= 202; [α]_D²⁵ +60.3 (c 0.1, MeOH); ¹H-NMR (600 MHz, CD₃OD): δ_H 6.64 (1H, d, J = 2.4 Hz, H-3), 6.31

(1H, dd, J = 2.4, 6.0 Hz, H-5), 7.95 (1H, d, J = 6.0 Hz, H-6), 5.55 (1H, s, H-7), 7.45 (2H, br d, J = 7.8 Hz, H-9 and H-13), 7.39 (2H, br t, J = 7.8 Hz, H-10 and H-12) and 7.34 (1H, br t, J = 7.8 Hz, H-11); ¹³C-NMR (150 MHz, CD₃OD) see Table 1.

Eutypoid B (4): White powder; C₁₇H₁₄O₄, M= 282; ¹H-NMR (600 MHz, CD₃OD): δ_H 4.72 (2H, s, H-5), 3.87 (2H, br s, H-6), 7.00 (2H, br d, J = 8.4 Hz, H-8 and H-12), 6.74 (2H, br d, J = 8.4 Hz, H-9 and H-11), 7.36 (2H, br d, J = 8.4 Hz, H-14 and H-18) and 6.89 (2H, br d, J = 8.4 Hz, H-15 and H-17); ¹³C-NMR (150 MHz, CD₃OD) see Table 1.

Helvafuranone (5): White powder; C₁₇H₁₄O₅, M= 298; [α]_D²⁵ -5.7 (c 0.1, MeOH); ¹H-NMR (600 MHz, CD₃OD): δ_H 5.84 (1H, s, H-5), 3.67 (1H, br s, H_a-6), 3.97 (1H, br s, H_b-6), 7.02 (2H, br d, J = 8.4 Hz, H-8 and H-12), 6.74 (2H, br d, J = 8.4 Hz, H-9 and H-11), 7.36 (2H, br d, J = 8.4 Hz, H-14 and H-18) and 6.88 (2H, br d, J = 8.4 Hz, H-15 and H-17); ¹³C-NMR (150 MHz, CD₃OD) see Table 1.

Table 1. ¹³C NMR (150 MHz, CD₃OD) data of compounds **1-5**

C		1	2		3		4		5
	^a δ _C	δ _C	δ _C	^b δ _C	δ _C	^c δ _C	δ _C	^d δ _C	δ _C
1	172.9	168.9	*						
2			148.4	170.2	173.1	176.3	176.3	170.1	173.4
3	46.5	46.4	118.5	112.3	113.1	127.2	127.2	127.7	129.6
4	23.6	23.6	113.0	177.9	182.0	162.4	162.4	156.1	160.0
5	29.1	29.1	154.4	117.1	117.1	72.8	72.8	96.7	98.5
6	60.3	60.3	59.0	156.2	158.0	33.8	33.8	31.0	32.5
7	168.9	172.8	172.1	71.2	73.4	128.6	128.7	126.5	128.6
8			20.6	140.6	141.1	130.6	130.7	129.6	130.9
9	54.7	54.7		126.8	128.0	116.8	116.8	115.5	116.6
10	39.4	39.4		128.4	129.7	157.7	157.6	157.8	157.5
11	25.7	25.8		128.0	129.5	116.8	116.8	115.5	116.6
12	23.4	23.3		128.4	129.7	130.6	130.7	129.6	130.9
13	22.2	22.2		126.8	128.0	122.3	122.3	119.9	121.8
14						131.5	131.4	130.1	131.6
15						116.4	116.4	115.3	116.4
16						159.1	159.1	157.9	159.4
17						116.4	116.4	115.3	116.4
18						131.5	131.4	130.1	131.6

Notes: ^aδ_C of cyclo-(S-Pro-R-Leu) in CD₃OD [9], ^bδ_C of (7*R*)-(hydroxy(phenyl)methyl)-4*H*-pyran-4-one in DMSO-*d*₆ [10], ^cδ_C of eutypoid B in CD₃OD [11], ^dδ_C of helvafuranone in DMSO-*d*₆ [12], *signal not detected.

Cytotoxic assay

SRB (Sulforhodamine B) method [13] was used to evaluate the *in vitro* cytotoxic activity of isolated compounds against two human cancer cell lines as Hep-G2 (liver) and A549 (lung). The detailed procedures have been described in the reference [14].

Results and discussion

Using combined chromatographic methods, five compounds were isolated from the EtOAc extract of the marine fungal strain *Aspergillus* sp. HL24. Compound **1** was obtained as a white powder. Its ^1H and ^{13}C NMR spectra are characteristic of a cyclic dipeptide, a class of compounds commonly found in microorganisms, with the presence of two amide CO groups at δ_c 168.9 (C-1) and 172.1 (C-7) (Fig. 1).

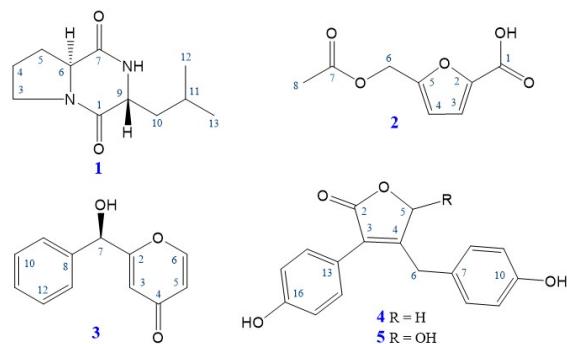


Figure 1. Secondary metabolites **1-5** from *Aspergillus* sp. HL24

In addition, signals for a nitrogen-bearing methylene group [δ_c 46.5 (C-3)/ δ_h 3.53 (2H, m, H-3)], two nitrogen-bearing methine groups [δ_c 60.3 (C-6) and 54.7 (C-9)/ δ_h 4.27 (1H, m, H-6) and 4.14 (1H, m, H-9)] and two doublet methyls [δ_c 23.3 (C-12) and 22.2 (C-13)/ δ_h 0.99 (3H, d, J = 6.6 Hz, H-12) and 0.98 (3H, d, J = 6.6 Hz, H-13)] were also observed. Based on the obtained data, the ^{13}C NMR data of **1** matched those reported for cyclo-(S-Pro-R-Leu) [9]. However, the long-range J_3 HMBC correlations (Fig. 2) of H-3 (δ_h 3.53) and H-10 (δ_h 1.55 and 1.95) with C-1 (δ_c 168.9) and between H-5 (δ_h 2.05 and 2.32) and C-7 (δ_c 172.1) precisely confirm the

chemical shifts of the two amide CO positions. Therefore, compound **1** was identified as cyclo-(S-Pro-R-Leu) [11] and the chemical shift values at C-1 and C-17 must be reassigned as shown in Table 1. The stereochemistry of compound **1** was determined based on the agreement of its optical rotation with previously reported data.

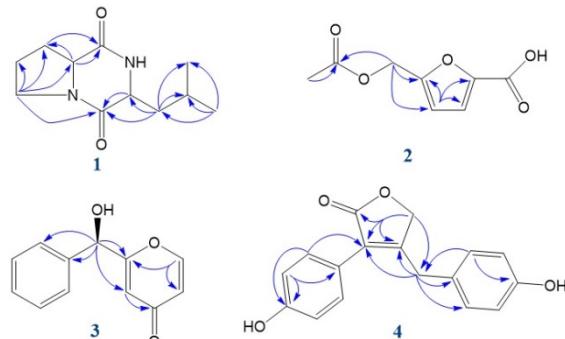


Figure 2. Key HMBC correlations of compounds **1-4**

Compound **2** was also isolated as a white powder. In its ^1H NMR spectrum, characteristic signals of two olefinic protons at δ_h 7.10 (1H, d, J = 3.0 Hz, H-3) and 6.57 (1H, d, J = 3.0 Hz, H-4) and one oxymethylene at δ_h 5.12 (2H, s, H-6) were observed, indicating the presence of a Sumiki's acid unit [15]. The ^1H NMR spectrum also revealed signal of an acetoxy-methyl at δ_h 2.08 (3H, s, H-8). Based on the obtained data, the ^1H NMR spectral data of compound **1** showed complete agreement with the corresponding data of acetyl Sumiki's acid [16]. Furthermore, detailed analysis of the signals in the ^{13}C NMR, HSQC, and HMBC spectra (Fig. 2) confirmed that this compound is acetyl Sumiki's acid.

In the ^1H NMR spectrum of compound **3**, signals corresponding to an ABX proton system (with coupling constants differing from those of aromatic protons) could be assigned to three pyrone protons at δ_h 6.64 (1H, d, J = 2.4 Hz, H-3), 6.31 (1H, dd, J = 2.4, 6.0 Hz, H-5) and 7.95 (1H, d, J = 6.0 Hz, H-6); one oxymethine δ_h 5.55 (1H, s, H-7) and five protons belonging to a phenyl group at δ_h 7.45 (2H, br d, J = 7.8 Hz, H-9 and H-13), 7.39 (2H, br t, J = 7.8 Hz, H-10 and H-12) and 7.34 (1H, br t, J = 7.8 Hz, H-11). The ^{13}C NMR signals further confirmed the presence of pyran-4-one [δ_c 173.1 (C-2), 113.1 (C-3), 182.0 (C-4), 117.1 (C-5) and 158.0 (C-6)],

oxymethine [δ_c 73.4 (C-7)] and phenyl [δ_c 141.1 (C-8), 128.0 (C-9 and C-13), 129.7 (C-10 and C-12) and 129.5 (C-1)] structural units. The oxymethine proton H-7 showed HMBC correlations with carbons C-2, C-3, C-8, and C-9, demonstrating its linkage to C-2 and C-8. Thus, compound **3** was identified as (7*R*)-(hydroxy(phenyl)methyl)-4*H*-pyran-4-one [10]. The 7*R* configuration was determined based on the agreement of its optical rotation value with previously reported data.

In the ^1H NMR spectrum of compound **4**, characteristic signals of two para-disubstituted benzene rings at δ_{H} 7.00 (2H, br d, J = 8.4 Hz, H-8 and H-12), 6.74 (2H, br d, J = 8.4 Hz, H-9 and H-11), 7.36 (2H, br d, J = 8.4 Hz, H-14 and H-18) and 6.89 (2H, br d, J = 8.4 Hz, H-15 and H-17) along with two methylene groups at δ_{H} 4.72 (2H, s, H-5) and 3.87 (2H, br s, H-6) were observed. The ^{13}C NMR spectrum also displayed signals indicating the presence of two para-disubstituted benzene rings and two methylene groups (Table 1). Additionally, signals of a lactone carbonyl group [δ_c 176.3 (C-2)] and a fully substituted double bond [δ_c 127.2 (C-3) and 162.4 (C-4)] were also observed. Based on the obtained data, the ^{13}C NMR signals of compound **4** matched perfectly at all positions with the published data for eutypoid B [11]. The HMBC correlation between H-5 and C-2 permitted the assignment of the lactone ring closure at C-2/C-5. Furthermore, HMBC correlations between H-5 and C-6, H-6 and C-8/C-12, and between H-14/H-18 and C-3 confirmed the attachment positions of the two para-disubstituted benzene rings.

The ^1H NMR and ^{13}C NMR spectral data of compound **5** were similar to those of **4** (Table 1), except for the presence of a dioxyethylene group at δ_c 98.5 (C-5)/ δ_{H} 5.84 (1H, s, H-5) in compound **5**, replacing the oxymethylene group found in **4**. The long-range HMBC correlations observed between proton H-5 and carbons C-2 and C-6 allowed for the assignment of the dioxyethylene group at C-5. Thus, compound **5** was identified as helvafuranone. With a very small specific optical rotation value, **5** was determined to possibly exist as a racemic mixture [12].

Previous investigations of soft coral-derived *Aspergillus* fungi have resulted in the isolation of alkaloid, indole-diterpenoid, benzophenone, prenylated indole alkaloid, prenylated xanthone, benzodipyran, aromatic butenolide, cyclic peptide, ecdysteroid, sesquiterpene lactone, phenylalanine derivatives [7, 8, 17–24]. However, this is the first report of compounds **1–5** from an *Aspergillus* fungus derived from soft corals. The cytotoxic activities of compounds **1–5** were evaluated on two human cancer cell lines, Hep-G2 (liver) and A549 (lung), using the SRB method [13]. However, these compounds did not show significant cytotoxicity ($\text{IC}_{50} > 100 \mu\text{M}$) against both cell lines.

Conclusion

From the marine fungal strain *Aspergillus* sp. HL24, a cyclic dipeptide (**1**), a furan (**2**), a pyranone (**3**), and two butenolide derivatives (**4** and **5**) were isolated using chromatographic methods. Their chemical structures were determined by one-dimensional (^1H NMR and ^{13}C NMR) and two-dimensional (HSQC and HMBC) nuclear magnetic resonance spectroscopy. Compounds **1–5** did not show significant cytotoxicity ($\text{IC}_{50} > 100 \mu\text{M}$) against two human cancer cell lines as Hep-G2 (liver) and A549 (lung).

Acknowledgments: This work was financially supported by Vietnam Academy of Science and Technology (grant number: VAST06.01/24-25). The authors are grateful to the Institute of Chemistry, VAST for measurement of the NMR spectra; Dr. Tran Hong Quang, Institute of Chemistry (ICH), VAST for collecting marine fungus sample and fermentation.

References

- [1] G. M. König, S. Kehraus, S. F. Seibert, A. Abdel-Lateff, and D. Müller, “Natural products from marine organisms and their associated microbes,” *ChemBioChem*, vol. 7, no. 2, pp. 229–238, 2006. DOI: 10.1002/cbic.200500087.

[2] C. J. Pearce, "Review of new and future developments in microbial biotechnology and bioengineering: *Aspergillus* system properties and applications," *Journal of Natural Products*, vol. 82, no. 4, pp. 1051–1051, 2019. DOI: 10.1021/acs.jnatprod.9b00211.

[3] R. Orfali, M. A. Aboseada, N. M. Abdel-Wahab, H. M. Hassan, S. Perveen, F. Ameen, E. Alturki, and U. R. Abdelmohsen, "Recent updates on the bioactive compounds of the marine-derived genus *Aspergillus*," *RSC Advances*, vol. 11, no. 28, pp. 17116–17150, 2021. DOI: 10.1039/d1ra01359a.

[4] N. T. Ngoc, T. H. Quang, T. T. H. Hanh, N. X. Cuong, V. T. Quyen, N. T. T. Ngan, D. V. Ha, N. H. Nam, and C. V. Minh, "Cytotoxic and antimicrobial metabolites from the marine-derived fungus *Aspergillus* sp. OPR23-FS01," *Phytochemistry Letters*, vol. 61, pp. 29–34, 2024. DOI: 10.1016/j.phytol.2024.03.010.

[5] D. V. Anh, T. H. Quang, N. T. Ngoc, T. T. H. Hanh, N. X. Cuong, N. T. T. Ngan, N. N. Tung, N. H. Nam, and C. V. Minh, "Fumigaclavines K–M, undescribed ergot alkaloids from the mangrove-derived fungus *Aspergillus* sp. DVXT-221 with cytotoxic and NO inhibitory activities," *Tetrahedron*, vol. 171, 134414, 2025. DOI: 10.1016/j.tet.2024.134414.

[6] N. T. Ngoc, L. T. Vien, T. T. H. Hanh, N. X. Cuong, N. H. Nam, and C. V. Minh, "Chemical constituents of a marine-derived fungus *Aspergillus* sp. HL24 and their cytotoxic activity," *Tetrahedron*, vol. 184, 134778, 2025. DOI: 10.1016/j.tet.2025.134778.

[7] R. R. Parvatkar, C. D'Souza, A. Tripathi, and C. G. Naik, "Aspernolides A and B, butenolides from a marine-derived fungus *Aspergillus terreus*," *Phytochemistry*, vol. 70, no. 1, pp. 128–132, 2009. DOI: 10.1016/j.phytochem.2008.10.017.

[8] J. Long, Y. Chen, W. Chen, J. Wang, X. Zhou, B. Yang, and Y. Liu, "Cyclic peptides from the soft coral-derived fungus *Aspergillus sclerotiorum* SCSIO 41031," *Marine Drugs*, vol. 19, no. 12, 2021. DOI: 10.3390/MD19120701.

[9] B. Yang, J. Dong, X. Zhou, X. Yang, K. J. Lee, L. Wang, S. Zhang, and Y. Liu, "Proline-containing dipeptides from a marine sponge of a *Callyspongia* species," *Helvetica Chimica Acta*, vol. 92, no. 6, pp. 1112–1117, 2009. DOI: 10.1002/hlca.200800422.

[10] K. Xu, C. Guo, D. Shi, J. Meng, H. Tian, S. Guo, "Discovery of Natural Dimeric Naphthopyrones as Potential Cytotoxic Agents Through ROS-Mediated Apoptotic Pathway," *Marine Drugs*, vol. 17, no. 4, 2019. DOI: 10.3390/MD17040207.

[11] D. Schulz, B. Ohlendorf, H. Zinecker, R. Schmaljohann, and J. F. Imhoff, "Eutypoids B–E produced by a *Penicillium* sp. strain from the North Sea," *Journal of Natural Products*, vol. 74, no. 1, pp. 99–101, 2011. DOI: 10.1021/np100633k.

[12] T. Furukawa, T. Fukuda, K. Nagai, R. Uchida, and H. Tomoda, "Helvafuranone Produced by the Fungus *Aspergillus nidulans* BF0142 Isolated from Hot Spring-derived Soil," *Natural Product Communications*, vol. 11, no. 7, pp. 1001–1003, 2016. DOI: 10.1177/1934578X1601100733.

[13] A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo, and M. Boyd, "Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines," *Journal of the National Cancer Institute*, vol. 83, no. 11, pp. 757–766, 1991. DOI: 10.1093/jnci/83.11.757.

[14] N. X. Cuong, L. T. Vien, T. T. H. Hanh, N. P. Thao, D. T. Thao, N. V. Thanh, N. H. Nam, C. Thung do, P. V. Kiem, and C. V. Minh, "Cytotoxic triterpene saponins from *Cercodemas anceps*," *Bioorganic & Medicinal Chemistry Letters*, vol. 25, no. 16, pp. 3151–3156, 2015. DOI: 10.1016/j.bmcl.2015.06.005.

[15] M. J. Kim, D.-C. Kim, J. Kwon, S. M. Ryu, H. Kwon, Y. Guo, S.-B. Hong, Y.-C. Kim, H. Oh, and D. Lee, "Anti-inflammatory metabolites from *Chaetomium nigricolor*," *Journal of Natural Products*, vol. 83, no. 4, pp. 881–887, 2020. DOI: 10.1021/acs.jnatprod.9b00560.

[16] R. Jadulco, P. Proksch, V. Wray, Sudarsono, A. Berg, and U. Gräfe, "New macrolides and furan carboxylic acid derivative from the sponge-derived fungus *Cladosporium herbarum*," *Journal of Natural Products*, vol. 64, no. 4, pp. 527–530, 2001. DOI: 10.1021/np000401s.

[17] W. F. Xu, R. Chao, Y. Hai, Y. Y. Guo, M. Y. Wei, C. Y. Wang, and C. L. Shao, "17-Hydroxybrevianamide N and its N1-methyl derivative, quinazolinones from a soft-coral-

derived *Aspergillus* sp. fungus: 13S enantiomers as the true natural products," *Journal of Natural Products*, vol. 84, no. 4, pp. 1353–1358, 2021. DOI: 10.1021/acs.jnatprod.1c00098.

[18] F. Zhang, L. Yang, Q. Y. Xie, J. C. Guo, Q. Y. Ma, L. T. Dai, L. M. Zhou, H. F. Dai, F. D. Kong, D. Q. Luo, and Y. X. Zhao, "Diverse indole-diterpenoids with protein tyrosine phosphatase 1B inhibitory activities from the marine coral-derived fungus *Aspergillus* sp. ZF-104," *Phytochemistry*, vol. 216, 113888, 2023. DOI: 10.1016/j.phytochem.2023.113888.

[19] J. Long, X. Pang, X. Lin, S. Liao, X. Zhou, J. Wang, B. Yang, and Y. Liu, "Asperbenzophenone A and versicolamide C, new fungal metabolites from the soft coral derived *Aspergillus* sp. SCSIO 41036," *Chemistry and Biodiversity*, vol. 19, no. 3, e202100925, 2022. DOI: 10.1002/cbdv.202100925.

[20] Q. Peng, Y. Ye, Q. Cao, J. She, Y. Liu, X. Zhou, X. Pang, and Y. Liu, "Prenylated xanthones from the coral-derived fungus *Aspergillus stellatus* SCSIO41406 and their antibacterial activities," *Natural Product Research*, 2025. DOI: 10.1080/14786419.2025.2480663.

[21] X. Wei, F. T. Wang, M. X. Si-Tu, H. Fan, J. S. Hu, H. Yang, S. Y. Guan, L. K. An, and C. X. Zhang, "Pyranodipyran derivatives with tyrosyl DNA phosphodiesterase 1 inhibitory activities and fluorescent properties from *Aspergillus* sp. EGF 15-0-3," *Marine Drugs*, vol. 20, no. 3, 2022. DOI: 10.3390/md20030211.

[22] H. Fan, X. H. Shao, P. P. Wu, A. L. Hao, Z. W. Luo, M. D. Zhang, J. Xie, B. Peng, and C. X. Zhang, "Exploring brominated aromatic butenolides from *Aspergillus terreus* EGF7-0-1 with their antifungal activities," *Journal of Agricultural and Food Chemistry*, vol. 72, no. 36, pp. 19869–19882, 2024. DOI: 10.1021/acs.jafc.4c04728.

[23] Q. Zeng, Y. Chen, J. Wang, X. Shi, Y. Che, X. Chen, W. Zhong, W. Zhang, X. Wei, F. Wang, and S. Zhang, "Diverse secondary metabolites from the coral-derived fungus *Aspergillus hiratsukae* SCSIO 5Bn1003," *Marine Drugs*, vol. 20, no. 2, 2022. DOI: 10.3390/md20020150.

[24] C. J. Zheng, C. L. Shao, L. Y. Wu, M. Chen, K. L. Wang, D. L. Zhao, X. P. Sun, G. Y. Chen, and C. Y. Wang, "Bioactive phenylalanine derivatives and cytochalasins from the soft coral-derived fungus, *Aspergillus elegans*," *Marine Drugs*, vol. 11, no. 6, pp. 2054–2068, 2013. DOI: 10.3390/md11062054.