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ABSTRACT

Drought is one of the most pervasive and complex natural hazards, significantly impacting ecosystems,
agriculture, and communities, particularly in Vietnam. The study constructed a hybrid model to explore the sensitivity
of drought forecast over Vietnam, utilizing bias-corrected precipitation and temperature data from regional climate
models, RegCM, and cIWRF. The resulting 6-month scale Standardized Precipitation Evapotranspiration Index
(SPEI-6), is then processed through two different multi-model ensemble approaches: a simple averaging method
(ENS) and a more complex artificial neural network (CTL), forming the basis of our two experimental setups. CTL
consistently outperformed ENS, demonstrating more substantial drought-predictive skills. CTL effectively captured
the spatio-temporal distribution of SPEI-6, showing high accuracy at a 1-month lead time. Its performance is
promising, particularly in regions with complex climate patterns like the Central of Vietnam (R4 and RS5), though
discrepancies in predicting SPEI-6 amplitudes become slightly evident at a 5-month lead time. The geographic extent
analysis further supports CTL's strengths in short-term forecasting, highlighting its utility in early warning systems
and immediate drought response planning. Nonetheless, the decrease in accuracy at extended lead times underscores
the need for model refinement. The study contributes to the growing body of literature on ANN-based drought
forecasting, emphasizing the potential and limitations of these models in the context of Vietnam.

Keywords: Drought, Seasonal Prediction, Vietnam, ANN, Hybrid approach.

1. Introduction changes in precipitation patterns, increased
evaporation rates, and more frequent extreme
weather events are likely to cause more severe
and prolonged droughts (Dai, 2011; Spinoni et
al., 2020; Thilakarathne and Sridhar, 2017;
Trenberth et al., 2014).

Drought is generally categorized into four
distinct types: meteorological, agricultural,

Droughts are among the most severe and
far-reaching natural hazards, affecting
numerous regions across the globe.
Characterized by prolonged periods of
abnormally low rainfall, droughts lead to
significant water shortages that adversely
affect ecosystems, agriculture, and human . . ¢
communities (WMO, 2006). The slow onset hydrologlcal, and socio-economic droughts
and the insidious nature of drought make it (Heim Jr, 2002; Vu et al, 2013).
particularly challenging to monitor and Meteorological drought is defined by a
manage. Under the global warming scenario, prolonged  period ~ of  below-average
precipitation, which can lead to water deficits
*Corresponding author, Email: hoadao@vnu.edu.vn in the atmosphere and surface. Hydrological
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drought concerns precipitation shortfalls'
effects on water resources, such as rivers,
reservoirs, and groundwater levels. According
to Wilhite and Buchanan-Smith (2005) and
Guttman (1999), the delay between the onset
of a meteorological drought and the
development of a hydrological drought
underscores the importance of early detection.
Precipitation-based drought indices are often
the earliest indicators of drought onset,
serving as critical tools for detecting and
monitoring meteorological drought
conditions, thereby mitigating long-term
consequences (Woldeyohannes et al., 2019).
Yihdego et al. (2019) and Zargar et al. (2011)
provided a comprehensive overview of over
150 drought indices developed over the years.
The diversity of drought indices reflects the
complex nature of drought, encompassing
various factors such as precipitation,
temperature, soil moisture, and vegetation
health (McKee et al., 1995; Mckee et al.,
1993). While validating every single index,
the Standard Precipitation Evaporation Index
(SPEI) (Begueria et al., 2014; Vicente-Serrano
et al., 2010) has gained increasing acceptance
in recent years. SPEI is derived from
precipitation and evapotranspiration and is
primarily used to identify meteorological and
hydrological droughts. The main advantage of
using SPEI as a drought index is that it is not
negatively  impacted by  topographic
variations, allowing for consistent application
across diverse landscapes. Additionally, the
standardization of SPEI ensures that the
frequencies of extreme events are consistent
across different locations and timescales,
providing a reliable measure for comparing
drought severity in diverse regions, as noted
by Hao et al., 2018.

Climate conditions in Vietnam are
influenced by Southeast Asia and Indian
monsoons, resulting in distinct wet and dry
seasons (Phan-Van et al.,, 2022; Vu et al.,

2013). These climate variabilities significantly
affect water availability, thus agricultural
productivity, and ecosystem health across
different regions of Vietnam. Previous studies
have extensively documented the observed
differences in drought characteristics among
subregions in Vietnam, highlighting the
region's vulnerability to varying drought
conditions (Le et al., 2019; Phan-Van et al.,
2022; Vu et al.,, 2013). These studies have
provided valuable insights into the linkages
between drought in Vietnam and large-scale

drivers, land wuse changes, and climate
variabilities.
Thus, accurate and timely drought

forecasting is essential for effective water
resource management, agricultural planning,
and disaster mitigation in Vietnam. Traditional
methods of drought prediction often rely on
statistical models or physical approaches (Deo
and Sahin, 2015; Hao et al., 2018; Mishra and
Desai, 2005; Wang et al., 2018) that may not
fully capture the complex,
relationships between climatic variables. With
advances of computational technology and
data availability, machine learning-based
methods have emerged as a powerful tool for
forecasting extreme phenomena like droughts
(ASCE, 2000; Mishra and Singh, 2011).
Artificial neural networks (ANNs) are well-
suited to modeling the intricate interactions
between meteorological variables that drive
drought conditions, offering a flexible and
adaptive approach to prediction (Spinoni et
al., 2020). The ANN is an informative
processing approach that mimics the structure
and function of the brain (McCulloch and
Pitts, 1943).
complexity, ANNs can effectively identify
nonlinear relationships between series of
independent and dependent variables — inputs
and outputs to the network, respectively
(Hornik et al., 1990). A striking advantage of

nonlinear

Given sufficient data and
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ANNSs is that the modeler does not need to
fully define the intermediate relationships
(i.e., physical processes) between inputs and
outputs (Sudheer et al., 2003). Various
architectures of ANNs have been investigated
globally in drought prediction and assessment,
including feedforward networks (Ali et al.,
2017; Mishra and Desai, 2006; Santos et al.,
2009), recurrent neural networks (Le et al.,
2017; Sardar et al., 2021; Shobha et al., 2023),
convolutional neural networks (Sardar et al.,
2021; Zhang et al., 2024), to capture the
complex climate
variables that influence drought conditions.
Nonetheless, the contribution of physically
based climate models to drought forecasting,
spanning from intra-seasonal to seasonal
scales, is undeniable. These models provide
essential support by offering detailed and
scientifically grounded insights into climatic
trends and anomalies, though their reliability
is still relatively low (Alley et al., 2019,
Becker et al., 2014). Over the years, a broad
spectrum of regional climate models has been
developed globally (Watanabe et al., 2010).
To benefit from the strengths of these diverse
models and address the limitations inherent in
individual dynamical models - such as
resolution and parameterization - there has
been an increasing trend toward combining
multiple models and their forecasts (Rayhan
and Afroz, 2024). This approach enhances the
robustness and accuracy of predictions by
integrating the unique capabilities of each
model. Hybrid models - the combination of
both physical and statistical-based models -
have gained attraction in drought forecasting

interactions  between

over recent decades (Adnan et al., 2021;
AghaKouchak et al., 2022; Madadgar and
Moradkhani, 2014; Wu et al., 2022; Zhang et
al., 2015). With the advancements highlighted
in their studies, they underscore the need for
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ongoing research in developing new strategies
incorporating hybrid models in drought
prediction.

The abovementioned studies have inspired
us to contribute to the growing body of
literature on applying hybrid models
incorporating ANN techniques in drought
forecasts. Building upon this foundation, the
primary objective of this study is to develop a
novel integration of a hybrid model and
examine how the inclusion of ANN impacts
the predictability of drought events over the
mainland of Vietnam. We combine linear and
nonlinear algorithms within a workflow
centered on the SPEI at a 6-month scale
optimized for drought forecasting in Vietnam.
The rationale behind using an ensemble of
dynamic models that integrates nonlinear and
linear statistical methods is to leverage the
unique strengths of each model type, enabling
us to capture diverse patterns in the data. By
investigating these various hybrid
configurations, we aim to enhance our
understanding of the potential and limitations
of these models in accurately forecasting
drought conditions in this region. Despite
advances in machine learning, limited studies
have explored the application of ANN for
drought prediction across multiple
subprocesses in this basin. To address this
gap, this study proposes a novel approach that
optimally tunes and integrates ANN models in
a systematic framework for improved drought
forecasting. The paper is organized as follows.
Section 2 describes the data, ANN-based
experimental designs, and verification metrics
of drought conditions in Vietnam. The
verification and comparison between the
experiments are then presented in Section 3.
Finally, the conclusion is given in Section 4.

2. Data and methods
2.1. Study area

The study area covered in this study
encompasses the entire mainland of Vietnam.
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As shown in Fig. 1, Vietnam is located in the
South East Asia. The area is generally
classified into 7 subregions in distinctive
climate patterns, topography conditions, and
latitudinal extents (Phan-Van et al., 2009; Van
Khiem et al., 2014). Due to diverse

geographical  locations and  monsoon
conditions, the dry season period varies
significantly =~ among  subregions: Rl

(Northwest), R2 (Northeast), R3 (Red River
Delta), R4 (Northcentral), R5 (Southcentral),
R6 (Central highland), and R7 (South).
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Figure 1. The highlighted study area (blue) divides in 7 subregions (from R1 to R7)

2.2. Standard Evapotranspiration Precipitation
Index and Drought Characteristics

To investigate drought conditions, we
utilized the Standardized Evapotranspiration
Precipitation Index over 6 months (SPEI-6).
The general SPEI is widely used for
quantifying water deficits at various time
scales (Begueria et al., 2014; Vicente-Serrano
et al., 2010).

Accounting for the spatio-temporal
variations in water deficits, the algorithm
transforms the time series of climatic water
balance (D; = Pr; — ET;) into the Log-logistic
probability distribution with zero mean and

one standard deviation. Pr; is precipitation
and ET; is evapotranspiration aggregated at
i-th time scales. Currently, the calculation
benchmark of potential evapotranspiration
(PET) refers to the Thornthwaite method,
using surface temperature (Thornthwaite,
1948). To be more specific, readers are
encouraged to refer to previous studies for
detailed mathematical explanations of SPEI
and its various modifications (Habeeb et al.,
2023; Zarei and Moghimi, 2019). The three
commonly used timescales are 3-month,
6-month, and 12-month. While the SPEI-3
corresponds to  short-term  agricultural
drought, the 12-month timescale reflects the
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characteristics  of  year-round  drought
variability (Steinemann et al., 2005; Tan et al.,
2015). Given the strong seasonal variability of
water deficits in dry - wet seasons and
monsoon conditions in Vietnam, the 6-month
is considered the more appropriate indicator
(Nguyen et al., 2014; Phan et al., 2014; Phan
and Ngo-Duc, 2009; Vu et al., 2015; Zhang et
al., 2002). Therefore, we use SPEI-6 as the
key metric to quantify drought characteristics,
capturing the water cycle's response to
precipitation anomalies.

A drought event in the context of SPEI-6 is
a period characterized by dryness whose
SPEI-6 falls below a pre-defined threshold
(Table 1). A negative SPEI indicates drier
periods, giving an alert for a drought event.
The study will mainly focus on moderate or
severe droughts, corresponding to SPEI-6
values less than or equal to -1.

Table 1. Drought categories by SPEI-6 (Begueria
et al., 2014; Vicente-Serrano et al., 2010)

SPEI Drought category
0> SPEI > -1 Mild drought
-1 >SPEI >-1.5 Moderate drought
-1.5> SPEI>-2 Severe drought
SPEI < -2 Extreme drought
2.3. Data

This study calculated drought indices using
the following datasets: (1) observed gridded
monthly precipitation/temperature data, and
(2) monthly precipitation/temperature data
predicted by dynamical models, following
bias correction.

Gridded monthly precipitation data
(VnGP) with a resolution of 0.25 degrees
derived from daily precipitation
measurements collected from a network of
meteorological stations across Vietnam for the
period 1980-2020 (Nguyen-Xuan et al., 2016;
Tran-Anh et al., 2022). These data were used
to calculate a drought index, which assisted in

WEre
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identifying observed drought events to verify
the performance of the model predictions.

Monthly predicted precipitation data were
derived as follows: First, forecast data from
the NCEP CFSv2 (Saha et al., 2014), with a
resolution of 1.0 degrees and a lead time of 6
months, were downscaled to a 20 km
resolution using two Regional Climate
Models (RCMs), RegCM and cIWRF.
Downscaling products from the RCMs,
including precipitation, temperature,
geopotential height, wind, humidity, and other
variables, were then remapped to a 0.25-
degree resolution and used to adjust the model
precipitation by using gridded precipitation
data as a reference.

The downscaled forecast datasets were
subsequently bias-corrected in three methods:
(1) adjustments based on the differences
between the model and observed climatology
(Cli); (2) Attificial Neural Network (ANN1),
and (3) Multiple Linear Regression (MLR).
We divided the observed and forecast data
into training and validation sets to achieve
this. The training was performed in two steps:
the first used data from 1982 to 2011 for
training, and the second employed data from
2011 to 2020 for validation. The iterative
process involved adjusting various parameter
settings and input variables until the model's
performance stabilized.

2.4. Hybrid model settings and experimental
design

Figure 2 illustrates the flowchart of the
hybrid model used for calculating SPEI on a
6-month scale, outlining the steps involved in
all experiments (highlighted in yellow boxes).

As noted above, the calculation of SPEI
requires bias-corrected precipitation and
surface temperature from RCMs, specifically
cIWRF and RegCM4. The bias-correction
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section highlights three distinct approaches:
Cli, ANNI1, and MLR.

The first method, labeled Cli, involves
adjustments based on the differences between
model-generated and observed climatology.
This straightforward method relies on aligning
the model data with observed historical
records. Specifically, for precipitation R and
temperature T, we have:

Recii = Rmoa * 6R; 6R = Robs/Rm_od

Tcii = Tmoa + AT; AT = Tops — Trnoa

Subscript "mod" denotes individual model
output, and "obs" denotes observation, while
the overline represents a temporal average of
the variable from 1982 to 2011. ANNI and
MLR are nonlinear and linear statistical
approaches to perform bias correction of
model outputs. In the context of bias
correction, the artificial neural network
adopted at ANNI1 uses the input variables X
(X could be R;04, Tmoa, and other model
outputs including daily minimum and
maximum temperatures, geopotential height at
levels 850 hPa and 500 hPa, outgoing
longwave radiation OLR, specific humidity at
2m, relative humidity at 2m, sea level
pressure, zonal wind at 200 hPa and 850 hPa,
and vertical velocity at 700 hPa) to learn and
predict the corrections needed (Y) to align
these variables more closely with observation.
Whereas MLR assumes a linear relationship
between the input and the correction factors
by adjusting the slope and intercepts of the
linear model:

Y =FX)

The function F(X) could be either
nonlinear (ANN) or linear (MLR). Our MLR
offers the Ordinary Least Squares method to
estimate the coefficients a and intercept f to
solve the function Y = aX + f.Details of
ANNI1 shall be discussed further in the
following section. It is important to note that

all inputs are normalized to avoid differences
in units between variables.

Afterward, the output monthly rainfall and
temperature recreated from each bias-
corrected model serve as a benchmark for
deriving SPEI-6 for
analyses.

At each bias-corrected model output, the
SPEI-6 index was calculated as input toward
the  multi-model  ensemble  approach
(illustrated in Fig. 2b). The potential
evapotranspiration (PET), a key component in
calculating SPEI, was estimated using the
Thornthwaite method based on surface
temperature  (Thornthwaite, 1948). We
aggregated bias-corrected R and PET over 6
consecutive months at each lead time to
compute SPEI-6. Combining SPEI-6 outputs
from the 6 models corrected through Cli,
ANNI, and MLR in the 2 RCMs, the
ensemble method aims to mitigate the
inherent uncertainties and biases in individual
models.

We conducted two experiments to combine
the ensemble members' outputs: one using a
simple ensemble mean approach (ENS) and
the other (CTL) employing the artificial
neural network. ENS aggregates outputs of
individual models by averaging SPEI-6. On
the other hand, CTL utilizes a more complex
neural network structure (ANN2) to combine
the ensemble members, aiming to capture
nonlinear relationships and interactions
between inputs that the ensemble mean might
overlook. These two methods were applied to
integrate the bias-corrected outputs, offering
different perspectives on improving drought
prediction accuracy through hybrid modeling.
The next section will describe the neural
network architectures adopted in ANNI1 and
ANN2.

subsequent drought
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a)Schematic flowchart of the hybrid model in computing SPEI-6
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Figure 2. a-b) Schematic diagram of the hybrid model and experimental design (yellow boxes) and
c) the Artificial Neural Network architectures designated in the drought forecasting procedure. In ANNI1,
the input nodes include rainfall R,,,4, temperature T4, and various model outputs (see text for further
descriptions); and the output nodes include bias-corrected R and T. In ANN2, the input layer includes
SPEI-6 from the 6 ensemble members (background colors corresponds to the bias-correction), and the
output includes ensemble aggregated SPEI-6 through neural network
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2.5. Artificial Neural Network (ANN)

Each network structure (Fig. 2c) consists
of neurons organized into interconnected
groups known as layers. Every ANN includes
a sequence of an input layer, a hidden layer(s),
and an output layer. We design two
subprocesses using a feedforward neural
network for drought forecasting with adaptive
and distinct architectures, namely ANN1 and
ANN?2. The major differences between ANN1
and ANN2 include (1) multilayer perceptron
architecture and (2) numerical solution for
gradient descent. They are explicitly
configured on their roles in the hybrid model,
following specific rules.

2.5.1. Multilayer Perceptron Architecture

In this term, the number of hidden layers
varies between the two architectures. In
ANNI, each output layer comprises 2 nodes,
including rainfall and temperature. The input
layer contains 13 nodes for standardized
model outputs: rainfall R, temperature T,
minimum and maximum temperature (Tx and
Tn), geopotential height at 850 and 500 hPa
(h850 and h500), outgoing longwave radiation
OLR, specific humidity at 2 m (q2), relative
humidity (rh2), sea level pressure SLP, zonal
winds at 200 hPa (u200) and 850 hPa (u850),
and vertical velocity at 700 hPa (w700). The
architecture of the ANNI is based on the
feedforward multilayer perceptron with only
one hidden layer, which has already been
applied to drought forecast (Belayneh et al.,
2014; Kim and Valdés Juan, 2003; Morid et
al., 2007).

Nevertheless, recent studies (Mezard and
Nadal, 1999; Schmidt and Overhoff, 2022)
show that the increase of hidden layers and
neurons can enable the network to learn more
complex representations of input data, thereby
capturing intricate patterns that a simple
feedforward multilayer perceptron might
miss. We construct ANN2 with a more
complicated  architecture = than  ANNI,
including 2 hidden layers. Each hidden layer

contains a total of 5 and 4 nodes, respectively.
The input layers include SPEI-6 from bias-
corrected 6 ensemble members and the output
layer consists of a single node representing
the post-processed SPEI-6 (see the right panel
of Fig. 2b). The design aims to integrate the
information from a multi-model ensemble into
a unified forecast in a nonlinear perspective to
compensate for the lost efficiency when
adapting the 6 ensemble models (Kurkova,
1992).

In both ANN1 and ANN2, the number of
nodes in each hidden layer may vary without a
fixed rule. However, as the input nodes should
reduce to the number of output nodes, they are
chosen to lessen gradually and between the
sizes of the input and output layers (Heaton,
2008).

2.5.2.  Numerical Solution for Gradient
Descent
Gradient descent is an optimization

algorithm commonly used to find optimal
weights of a neural network by minimizing
the cost function J(8) during training. A
stochastic gradient descent starts with putting
random weights 6 = 0;. After that, the
weights are adjusted in the opposite direction
of the gradient to reduce the loss. The size of
the adjustment is determined by the learning
rate 7. At each iteration, new weights are
updated by Eq. 1 until the loss function
converges to a minimum:
6; =0;_1—n-VoJ(0) @)
ANN?2 adopts a simple gradient descent
solver with the steps above, which is
straightforward to implement and consumes
less memory. This simple algorithm often
results in slower convergence and may
quickly get stuck in local minima. The
addition of momentum v works as a solution
for this problem (Eq. 2):
v =a v +1-VeJ(0)
0; =0i_1—v; (2)
with « is the momentum factor. In ANN2, we
choose a = 0.7.
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Apart from these differences, ANN1 and
ANN2 share several similar features in their
training processes. Both networks are trained
over 1000 epochs; the activation function is
sigmoid. Additionally, a consistent learning
rate of 0.02 was applied in both cases with an
early stopping technique to halt training early if
the validation loss began to increase. We
adopted a random initialization method,
randomly initializing the weights and biases
from the normal distribution to ensure
stochastic starting points for the parameters.
These configurations were calibrated carefully
and trained multiple times to avoid overfitting
and sensitivity to initial parameters. These
shared parameters ensure a fair comparison
between the two architectures, focusing the
evaluation on the impact of network
complexity on drought predictive performance.

2.6. Verification metrics
Correlation coefficients

To evaluate the accuracy and reliability of
drought event prediction made by the SPEI-6,
categorical skill scores are used as statistical
measures. The scores compare the predicted
drought month against observed SPEI-6 to
determine how accurately the model forecasts
dry and wet conditions in time and space.

Categorical skill scores

The drought occurrence is calculated based
on SPEI-6 values falling below a specific
threshold (see Table 1). We focus on the onset
of moderate drought events (SPEI-6 < -1) and
verify the model performance in terms of a
number of yes/no events as in the contingency
table (Table 2).

Table 2. Contingency table to verify moderate or
severe drought events by SPEI-6 < -1

Drought event Drought event observed
forecast Yes No Marginal total
Yes a b atb
No c d c+d
Marginal total atc | b+d N
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- Accuracy (or Proportion Correct) measures
how often the model's predictions match the
actual observation over time. It represents the
Proportion of correct predictions relative to
the total number of predictions made
(see Eq. 1).

Accuracy = a;—d (Eq. 1)

- Probability of Detection (POD) measures
the Proportion of observed moderate drought
events (SPEI-6 below -1) that the model
correctly predicted. POD ranges from 0 to 1,
where 1 indicates perfect detection of all
drought events.

a
POD = — (Eq. 2)

- Heidke skill score (HSS) measures the
accuracy of the model's prediction relative to
random chance, accounting for hits, misses,
and false alarms. HSS ranges from -oo to 1,
where 1 indicates perfect accuracy, and 0
indicates no skill compared to random chance.

_ 2x(axd—-bxc)
HSS = tioxcrdr@imxoxe (Ed-3)

- Threat score (TS) evaluates how well the
model predicts the occurrence of drought
events (both hits and misses) and penalizes for
false alarms. TS ranges from 0 to 1, with 1
indicating perfect accuracy.

TS = —— (Eq. 4)

a+b+c

3. Results and discussion
3.1. Prediction skill

This section of the paper deals with the
performance evaluation of the proposed
frameworks. To provide a brief overview of
how well the forecasted SPEI-6 aligns with
observation, Fig. 3 presents the correlation
coefficients between predicted and observed
datasets from 1983 to 2020 for the 2
experiments. The correlations generally exhibit
minor variations across different regions and
lead times. In CTL, the correlation coefficients
are relatively high across most regions of
Vietnam, with values primarily ranging from
0.75 to 0.95. Additionally, the correlations
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seem to decrease with extending lead times for
most subregions, notably observed in R3,
though still generally high even at a 6-month
lead time. As for RS, the maxima of
correlations peak at 4 and 5-month lead times,

a)CTL

Correlation coefficient*

Correlation coefficient*

concentrating to the north of the area. The
peaks of high correlations are found mainly in
R1, and R5-R7, indicating a good alignment
with the trend in observed SPEI-6 in these
subregions.

0.95
0.90
0.85

0.80

0.70
0.65

0.60

(* Hatching: statistical significance level of 5%)

Figure 3. The spatial distribution of correlation coefficients between SPEI-6 ensemble means and
observations, estimated from CTL (a) and ENS (b). The correlations are examined over lead times
ranging from 1 to 6 months during 1983-2020

The correlation coefficients at ENS are
lower than the CTL experiment (Fig. 3b), with
values mostly ranging from 0.6 to 0.75; the
highest values do not exceed 0.8. The
decrease in correlation with increasing lead
time at ENS is more noticeable. However,
especially in the earlier lead times (LT = 1mo
to 3mo), southern regions (including R5-6)
tend to show slightly higher correlations than
the northern regions. As the lead time
increases, this distinction becomes less
pronounced, exhibiting weak correlations
overall. As noted in previous studies, these
subregions are particularly vulnerable to
severe drought (Le et al., 2019).

As classified in Table 1, different threshold
values cut off dry or wet periods. When
correlations coupled with the accuracy index

(Fig. 4), the results demonstrate an overall
promising predictability of the neural network
inclusion in the ensemble (CTL). The predicted
accuracy for drought and non-drought events
exceeds 0.8 at every lead time across the entire
domain, with particularly high accuracy in the
southern part of Vietnam (R6-R7). At a
I-month lead time, most areas show accuracy
levels above 0.85. However, by the 6-month
lead time, some subregions, particularly in the
north (R1-5), see accuracy reductions to around
0.78 to 0.82. Among the two models, CTL has
performed better than ENS across all lead
times, where accuracy exceeds 0.86 in most of
the subregions. CTL also demonstrates less
degradation in drought forecast at longer lead
times, with ENS predictability decreasing more
significantly, from around 0.82 to as low as 0.7.
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To provide a more detailed comparison
between CTL and ENS, we adopt further
categorical indices to evaluate the neural

a)CTL

network's performance in predicting moderate
drought occurrences on a monthly scale,
including POD, HSS, and TS (Figs. 5 and 6).

Figure 4. Accuracy index of (moderate and above) Drought Events categorized by SPEI-6 below -0.5

By CTL, both POD and HSS are
significantly high in R1, R6-7 and tend to
decrease as lead time increases (Fig. 5). In
contrast, the predictive scores of the
remaining subregions exhibit sparse and
unstable minima, below 0.4 in POD and 0.5 in
HSS, in their spatial distribution. As TS is
lower than POD at every lead time (Fig. 3c),
the model is good at detecting actual drought
events despite incorrectly predicting some
false alarms. Although the forecasted SPEI-6
at some points in the Central area (R4 - R5) is
relatively following the observation (high
correlation in Fig. 2a), the categorical skill
scores indicate less skill in accurately
classifying drought events.
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Although there is minor variation in
correlation coefficients and accuracy index
(Figs. 3-4), drought -categorical indices
clearly show that CTL excels ENS in terms
of moderate or more severe droughts (Fig. 5
vs. Fig. 6). Overall, CTL outperforms in
predicting drought events in every subregion,
where the accuracy, POD, HSS, and TS are
relatively higher, indicating good
predictability and fewer false alarms. The
northern part of Vietnam (R1-4) shows lower
scores, including weaker drought
predictability. In these subregions, high
PODs (above 0.8) are noticeable at shorter
lead times (1-3 months) but decline to lower
values (around 0.6) at longer lead times
(especially at 5 months) meanwhile, the
prediction skills of ENS decline in extended
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lead times, particularly in R6-7. ENS shows
less spatial consistency than CTL, with
higher scores scattered and less prevalent.
The drop-off at longer lead times in the

southern region (R5-7) is also more
pronounced. R3's drought events are better
predicted at 1-month and 3-month scales,
similarly in CTL and ENS.

Verification scores of Moderate Drought Event Forecast in CTL

LT = 1mo

LT = 2mo LT = 3mo

Heidke skill score Prob. of Detection

Threat score

LT = 4mo

LT = 5mo LT = émo

Figure 5. Categorical verifications (POD, HSS, TS; see text for details) for Moderate Drought Event
Forecast categorized using SPEI-6 calculation in CTL

The above discussion reflects the spatial
variability  depicting the accuracy of
forecasted drought events. A possible reason
for the spatial variation of predicted SPEI-6
over Vietnam is that SPEI-6 serves as an
integrated dry-wet classification but indirectly
reflects fluctuations in predicted rainfall and
temperature. These prediction skills highly
depend on each subregion's regional climate
variability and topographic factors. The
spatial variability of SPEI-6 aligns well with
the wverification map of NCEP CFSv2-
predicted rainfall made by Phan-Van et al.

(2018). They stated the rainfall patterns are
predicted more accurately in the southern
regions and that the local rainfall band in
Central Vietnam (R4-5) shows good
agreement between model and observation,
which is also visible in our predicted SPEI-6.
Since NCEP CFSv2 serves as our initial and
boundary conditions, their findings are
directly relevant to our study. As lead time
increases, forecast uncertainty typically rises
(Lorenz, 1963), affecting drought
predictability. Early lead times may allow the
hybrid model to rely on the initial conditions
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and monthly trends, often resulting in higher
accuracy. This principle is reflected in our
study, as shown by the model's performance
over different lead times.

Understanding how effectively the neural
network represents drought conditions hinges
on analyzing the time series of the index

values and the corresponding drought
categories. Since it's impractical to show the
variation of SPEI-6 for every experiment and
lead times, we concentrate on the simulation
results of CTL due to its superior performance
at 1-month and 5-month ahead in the next
section.

Verification scores of Moderate Drought Event Forecast in ENS

LT = 1mo LT = 2mo LT = 3mo
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Figure 6. Categorical verifications (POD, HSS, TS) for Moderate Drought Event Forecast categorized
using SPEI-6 calculation in ENS

3.2. SPEI-6 values

Figures 7-8 illustrate the temporal
variation of the regional mean SPEI-6 index at
different forecast lead times in both

observations and CTL. Overall, the model
effectively captures the evolution of the SPEI-
6 index across all subregions and lead times.
Although there are some minor discrepancies,
the model generally simulates the index
amplitude well in most subregions compared
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to observations. However, the difference in
amplitude between neural network
simulations and observations becomes more
pronounced in subregions R2 and R5, where
the model appears to lag slightly behind the
observed data in capturing the onset or end of
drought periods. The amplitude of fluctuations
in SPEI-6 varies across regions. For example,
the model tends to slightly underestimate the
peaks of SPEI-6 values at R4 and RO,
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suggesting a mismatch in classifying drought
events between these two datasets. This is also
a minor limitation of the hybrid model in

capturing the intensity of extreme drought
events due to the smoothing effects in
downscaling and bias-correction processes.

Regional mean of SPEI-6 for Leadtime = 1 month(s)
(Red: Observation, Blue: Model ensemble)
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Figure 7. Evolution of the regional mean SPEI-6 for 1-month forecast by CTL model at different
subregions in Vietnam. Dashed lines remark SPEI-6 at specific thresholds at -0.5 and 0.5

The 1-month lead time simulations (Fig. 7)
demonstrate the highest consistency with
observations, while the model's performance
declines with longer lead time forecasts. The
model generally captures the overall trend and
variability of the observed SPEI-6,
particularly in subregions R1, R3, and R7.
Both the observations and model highlight

moderate drought events in certain years and
regions, such as around 2008-2011 and 2019—
2020. A prominent feature is that the
subregions display distinct forecasted SPEI-6
patterns. For instance, R3 and R5 experience
more extreme fluctuations, aligning with
observations. It is opposed to R4-7, which
shows relatively stable conditions. These
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regions might experience more frequent and
prolonged drought conditions, with droughts
occurring 3-4 times per decade and lasting up
to 4-6 months in some cases. From 2019 to

2020, the observed SPEI dips below -2.0,
indicating severe drought, whereas the model
shows a milder drought with SPEI of -1.5
(R6) and 1.8 (R7).

Regional mean of SPEI-6 for Leadtime = 5 month(s)
(Red: Observation, Blue: Model ensemble)

2006 2008 2010 2012

2014 2016 2018 2020

Figure 8. Evolution of the regional mean SPEI-6 for 1-month forecast by ENS model at different
subregions in Vietnam. Dashed lines remark SPEI-6 at specific thresholds at -0.5 and 0.5

The model still performs excellently at
longer timescales (5-month lead time, Fig. 8),
especially in subregions R1 and R7, where the
model closely follows the observed trends and
fluctuations corresponding to seasonal and
interannual variations. In some cases, more
pronounced discrepancies are presented.
Remarkably, the amplitude differences
become more noticeable during extreme
drought events (underestimation in R2-6). The
extremes in dry and wet conditions appear
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more moderate in the model ensemble at the
S5-month lead time compared to the 1-month
lead time. This smoothing effect in longer
lead times could be due to the model
averaging more extreme variations over the
extended period. Also, the model seems to lag
slightly behind observed data, particularly in
sharp transition periods from wet to dry
conditions or vice versa. At R5, R6, and R7,
the model's performance is still good, though
some minor deviations in amplitude are
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observed, particularly in the later years (post-
2018). This suggests a decline in predictive
accuracy compared to 1-month timescale.

3.3. Spatial distribution of droughts

Accurately predicting the geographical
extent of drought is crucial for effective
drought management. This section continues
examining the performance of CTL model in
forecasting the spatial distribution of moderate
droughts across the seven subregions (R1-R7),
focusing on the comparison between short-
term (1-month lead time) and longer-term
(5-month lead time) forecasts. The verification
spans 2005 to 2020. The red areas represent the
observed extent of drought, while the blue

areas correspond to the neural network's
forecasted extent.

At the 1-month lead time forecast (Fig. 9),
the CTL model exhibits a relatively strong
ability to predict the geographic extent of
moderate drought across most subregions. The
model's predictions align closely with
observed drought areas, especially in
subregions R6, and R7, where the forecasted
and observed drought extent show remarkable
consistency. In R7, for example, the model
successfully captures both the timing and
extent of the significant drought events
between 2008 and 2009, as well as those in
2015-2016 and 2019-2020.

Geographical Extent of Moderate drought by SPEI-6 for Leadtime = 1 month(s)
(Red: Observation, Blue: Model ensemble)
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Figure 9. Geographical extent of Moderate drought by SPEI-6 fore 1-month lead time. Red areas denote
observed extent, while blue areas denote CTL predicted extent

However, the underestimation of drought
areas is more pronounced over subregions
R1-RS5. The peaks of drought extent in these
periods are well-represented. With the

complex topography and varied climate
patterns of R4-5 (Van Khiem et al., 2014), the
model manages to simulate the spatial
distribution of drought events with some
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underestimation, particularly during 2010 and
2015-2017 (30% difference). However, the
overall pattern is captured reasonably well.
During the 2015 drought at R4, the model
predicted a maximum extent of 5%, whereas
the observed extent was 50%, reflecting an
underestimation of 45%. The close
correspondence suggests that the neural
network can incorporate the necessary
parameters to predict droughts even in regions
with diverse climate influences. While the
model is generally reliable, it may struggle
with certain local factors or extreme events.
These minor deviations, though infrequent,
highlight the need for further refinement in
the ANN's ability to capture the full range of
drought-driving mechanisms.

As the forecast lead time extends to 5
months, the model's performance in predicting
the geographical extent of moderate drought
varies among subregions (Fig. 10). In general,
the fluctuations of geographical extent at
5-month lead time are smoothed out; the
model appears to slightly lag the observed
trends, especially during rapid changes from
wet to dry conditions. A decline is particularly
evident in subregions R1-2, R6 and R7. The
underestimation is more pronounced in these
subregions, and the neural network fails to
capture several drought areas. The model
significantly underestimates drought extent
during significant events, such as in 2010,
where the observed R2 extent reached 90%,
but the model predicted only 40%.

Geographical Extent of Moderate drought by SPEI-6 for Leadtime = 5 month(s)
(Red: Observation, Blue: Model ensemble)
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Figure 10. Geographical extent of Moderate drought by SPEI-6 fore 5-month lead time. Red areas denote
observed extent, while blue areas denote CTL's predicted extent

In contrast, R3-R5 presents a mixed
performance at the 5-month lead time. While
the model still underestimates drought extent
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in some cases, the discrepancies are less
pronounced or even better than the 1-month
lead time. For example, the predicted drought
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extent better aligns with observation during
2015 in R4 (a peak of 50%) and 2016 in R5 (a
peak of 75%).

4. Concluding remarks

In this study, we constructed a new
integration of a hybrid model in two distinct
experiments to analyze the sensitivity of
drought forecast over Vietnam using drought
index SPEI on a 6-month scale. The hybrid
model involves several steps, prominently
featuring bias correction of precipitation and
temperature data from regional climate models,
cIWRF, and RegCM4. Differences in the
performance of the two dynamical RCMs
indeed have the potential to impact the skill of
both bias-corrected methods, such as Cli, ANN,
and MLR, as variations in downscaled inputs
could affect the accuracy of the drought
forecast. The corrected outputs are then used to
calculate SPEI-6, feeding into a multi-model
ensemble strategy designated to reduce the
uncertainties of standalone models. We
developed two experiments in this: a
feedforward and complex neural network
architecture (ANN2), namely CTL, and an
ensemble mean, ENS. These methodologies
demonstrate the application of hybrid models
in improving the reliability of drought
forecasts.

Based on the prediction skills verified, it is
plausible that the results are influenced by
how well the model captures the relationship
between monthly rainfall and, thus, the SPEI-
6 index. Differences in rainfall distribution
and intensity could lead to variations in the
SPEI-6 response, affecting the overall
predictability of drought events. The
categorical verification metrics depicted
excellent results, highlighting the performance
of CTL over ENS. This distinction
underscores the potential of neural network
models in enhancing drought prediction
accuracy compared to ensemble models in
specific scenarios.

The comparison in different time scales
highlights that the CTL's predictive skill of
drought index SPEI-6 decreases as the lead
times extend. At the 1-month lead time, the
model more accurately captures both the
timing and amplitude of the SPEI-6 across
most subregions. However, as the lead time
increases to 5 months, the model shows more
significant discrepancies, particularly in the
amplitude of extreme droughts. Besides, the
quantitative analysis indicates that the model
generally follows the observed data trends,
suggesting its robustness in reflecting typical
drought conditions even at longer lead times.
This outcome highlights challenges in long-
term drought forecasting under varying
regional and climatic conditions.

The analysis of the geographic extent of
moderate droughts reveals that while the CTL
model performs well in  short-term
forecasting, its accuracy diminishes with
longer lead times. This makes the neural
network valuable for early warning systems
and immediate drought response planning.
The notable decline in accuracy at longer lead
times, particularly at subregions with complex
climate patterns, such as RS5, highlights the
need for model enhancements.

Although the CTL model demonstrates
certain advantages when evaluated using
corresponding multilayer perceptron
architecture, there is no universal method for
determining which type of architecture and
training approach is most suitable for
forecasting objectives. This study primarily
highlights the potential benefits of CTL under
specific parameter settings, yet selecting
optimal ANN architectures remains an open
challenge. The findings suggest that while
CTL shows promise, the broader question of
how to best design and train neural networks
for drought forecasting still requires further
exploration and refinement.

Future improvements could focus on better
integrating these signals, enhancing the
model's sensitivity to local climate factors,
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and refining its representation of drought-
driving mechanisms. On the one hand,
expanding the model inputs to include more
climate data affecting drought conditions,
such as soil moisture, could improve the
model's long-term forecasting capabilities.
Additionally, enhancing hybrid models,
combining neural networks with other
advanced statistical or dynamical models,
such as Adaptive Neuro-Fuzzy Inference
System (ANFIS), Support Vector Machine
(SVM), or Long Short-Term Memory (LSTM)

networks,  could  strengthen  drought
forecasting performance in a nonlinear
relationship.
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